# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2021057
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility

 1 Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China 2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China 3 Department of Mathematics, Southern University of Science and Technology, Shenzhen, China

* Corresponding author: Chufang Wu

Received  June 2020 Revised  February 2021 Early access March 2021

Fund Project: The first author is supported by Research Grants Council of Hong Kong under Grant Number 17301519

In this paper, we propose a model to price vulnerable European options where the dynamics of the underlying asset value and the counter-party's asset value follow two jump-diffusion processes with fast mean-reverting stochastic volatility. First, we derive an equivalent risk-neutral measure and transfer the pricing problem into solving a partial differential equation (PDE) by the Feynman-Kac formula. We then approximate the solution of the PDE by pricing formulas with constant volatility via multi-scale asymptotic method. The pricing formula for vulnerable European options is obtained by applying a two-dimensional Laplace transform when the dynamics of the underlying asset value and the counter-party's asset value follow two correlated jump-diffusion processes with constant volatilities. Thus, an analytic approximation formula for the vulnerable European options is derived in our setting. Numerical experiments are given to demonstrate our method by using Laplace inversion.

Citation: Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021057
##### References:

show all references

##### References:
The relationship between initial stock price $S_0$ and the correction term $P_1$ under difference values of strike price $K$
The relationship between initial asset value $V_0$ and the correction term $P_1$ under different values of total liability $D$
The relationship between correlation parameters $\rho_{sy}$ (rho0), $\rho_{sv}$ (rho1), $\rho_{vy}$ (rho2) and the correction term $P_1$
Preference parameters
 Parameter Value Parameter Value Initial stock price $S_0=40$ Correlation($S$ $\&$ $Y$) $\rho_{sy}=-0.1$ Strike price $K=40$ Correlation($S$ $\&$ $V$) $\rho_{sv}=0.2$ Initial asset price $V_0=100$ Correlation($Y$ $\&$ $V$) $\rho_{vy}=0.1$ Total liability $D=100$ Intensity of Poisson process $N_t^S$ $\lambda^S=1$ Default boundary $\tilde{D}=100$ Intensity of Poisson process $N_t^V$ $\lambda^V=0$ Deadweight of bankruptcy $\gamma=0.6$ Inverse mean-reverting speed $\epsilon=0.001$ Asset volatility $\sigma=0.2$ Total risk premium $\Lambda=2$ Risk-free rate $r=0.05$ Standard deviation of $Y$ $u=\frac{1}{\sqrt{2}}$ Time to maturity $T=1$
 Parameter Value Parameter Value Initial stock price $S_0=40$ Correlation($S$ $\&$ $Y$) $\rho_{sy}=-0.1$ Strike price $K=40$ Correlation($S$ $\&$ $V$) $\rho_{sv}=0.2$ Initial asset price $V_0=100$ Correlation($Y$ $\&$ $V$) $\rho_{vy}=0.1$ Total liability $D=100$ Intensity of Poisson process $N_t^S$ $\lambda^S=1$ Default boundary $\tilde{D}=100$ Intensity of Poisson process $N_t^V$ $\lambda^V=0$ Deadweight of bankruptcy $\gamma=0.6$ Inverse mean-reverting speed $\epsilon=0.001$ Asset volatility $\sigma=0.2$ Total risk premium $\Lambda=2$ Risk-free rate $r=0.05$ Standard deviation of $Y$ $u=\frac{1}{\sqrt{2}}$ Time to maturity $T=1$
Numerical approximation for the option price $P^\epsilon$
 Strike price T=0.5 T=1 T=1.5 T=2 30 7.9925 8.6168 9.2444 9.8764 35 4.7952 5.4263 6.0566 6.6868 40 2.2740 2.8658 3.4625 4.0619 45 0.8294 1.2551 1.7232 2.2222 50 0.2386 0.4569 0.7373 1.0737
 Strike price T=0.5 T=1 T=1.5 T=2 30 7.9925 8.6168 9.2444 9.8764 35 4.7952 5.4263 6.0566 6.6868 40 2.2740 2.8658 3.4625 4.0619 45 0.8294 1.2551 1.7232 2.2222 50 0.2386 0.4569 0.7373 1.0737
Numerical approximation for the option price $P^\epsilon$
 Strike price $\lambda^S=0.5$ $\lambda^S=1$ $\lambda^S=1.5$ $\lambda^S=2$ $\lambda^S=2.5$ 30 8.6090 8.6168 8.6257 8.6355 8.6462 35 5.3874 5.4263 5.4653 5.5045 5.5438 40 2.7907 2.8658 2.9387 3.0095 3.0785 45 1.1744 1.2551 1.3336 1.4098 1.4839 50 0.3964 0.4569 0.5167 0.5756 0.6338
 Strike price $\lambda^S=0.5$ $\lambda^S=1$ $\lambda^S=1.5$ $\lambda^S=2$ $\lambda^S=2.5$ 30 8.6090 8.6168 8.6257 8.6355 8.6462 35 5.3874 5.4263 5.4653 5.5045 5.5438 40 2.7907 2.8658 2.9387 3.0095 3.0785 45 1.1744 1.2551 1.3336 1.4098 1.4839 50 0.3964 0.4569 0.5167 0.5756 0.6338
 [1] Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic & Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013 [2] Mondher Damak, Brice Franke, Nejib Yaakoubi. Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4093-4112. doi: 10.3934/dcds.2020173 [3] Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285 [4] Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020143 [5] Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial & Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044 [6] Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451 [7] Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142 [8] Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058 [9] Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871 [10] Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651 [11] Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 [12] Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092 [13] Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298 [14] Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525 [15] Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 [16] Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649 [17] Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026 [18] Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control & Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025 [19] Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072 [20] Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021177

2020 Impact Factor: 1.801