- Previous Article
- JIMO Home
- This Issue
-
Next Article
Design of path planning and tracking control of quadrotor
A novel risk ranking method based on the single valued neutrosophic set
Department of Management Sciences, R.O.C. Military Academy, Kaohsiung 830, Taiwan, Institute of Innovation and Circular Economy, Asia University, Taichung 413, Taiwan |
Risk assessment is a key issue in the process of product design and manufacturing. Traditionally risk assessment uses the risk priority number (RPN) method to rank the extent of a threat. However, this simultaneously includes quantitative and qualitative evaluation factors in the process of risk assessment. Moreover, the information provided by different experts for evaluation factors contain ambiguous, incomplete and inconsistent information. These problems lead to more difficulty for risk assessment, and cannot be effectively solved by the traditional RPN method. To solve some limits of the traditional risk analysis method, this paper integrates the single valued neutrosophic set and subsethood measure method to rank the extent of the threat. For missing or incomplete information in the information aggregation process, the minimum, averaging and maximum operators are used to perform data imputation to avoid the distortion of decision results. Finally, a numerical example of high-dose-rate (HDR) brachytherapy treatments is provided to demonstrate the effectiveness and feasibility of the proposed method, and a comparative analysis with some other existing methods is given.
References:
[1] |
K. T. Atanassov,
Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
doi: 10.1016/S0165-0114(86)80034-3. |
[2] |
P. Biswas, S. Pramanik and B. C. Giri,
TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment, Neural Comput. Appl., 27 (2016), 727-737.
doi: 10.1007/s00521-015-1891-2. |
[3] |
British Standards Institute, Reliability of Systems, Equipment and Components, Guide to Failure Modes, Effects and Criticality Analysis (FMEA and FMECA), Vol. BS 5760-5, British Standards Institute, United Kingdom, 1991. |
[4] |
K. H. Chang,
Evaluate the orderings of risk for failure problems using a more general RPN methodology, Microelectron. Reliab., 49 (2009), 1586-1596.
doi: 10.1016/j.microrel.2009.07.057. |
[5] |
K. H. Chang, A novel reliability calculation method under neutrosophic environments, Ann. Oper. Res., (2021) in press.
doi: 10.1007/s10479-020-03890-4. |
[6] |
K. H. Chang,
A more general risk assessment methodology using soft sets based ranking technique, Soft Comput., 18 (2014), 169-183.
doi: 10.1007/s00500-013-1045-3. |
[7] |
K. H. Chang, Y. C. Chang and P. T. Lai,
Applying the concept of exponential approach to enhance the assessment capability of FMEA, J. Intell. Manuf., 25 (2014), 1413-1427.
doi: 10.1007/s10845-013-0747-9. |
[8] |
Y. C. Chang, K. H. Chang and C. Y. Chen,
Risk assessment by quantifying and prioritizing 5S activity for semiconductor manufacturing, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., 227 (2013), 1874-1887.
doi: 10.1177/0954405413493901. |
[9] |
N. Chanamool and T. Naenna,
Fuzzy FMEA application to improve decision-making process in an emergency department, Appl. Soft. Comput., 43 (2016), 441-453.
doi: 10.1016/j.asoc.2016.01.007. |
[10] |
K. H. Chang,
Generalized multi-attribute failure mode analysis, Neurocomputing, 175 (2016), 90-100.
doi: 10.1016/j.neucom.2015.10.039. |
[11] |
D.C. US Department of Defense Washington, Procedures for Performing a Failure Mode Effects and Criticality Analysis, US MIL-STD-1629A, 1980. |
[12] |
M. Giardina, F. Castiglia and E. Tomarchio,
Risk assessment of component failure modes and human errors using a new FMECA approach: Application in the safety analysis of HDR brachytherapy, J. Radiol. Prot., 34 (2014), 891-914.
doi: 10.1088/0952-4746/34/4/891. |
[13] |
Y. H. Guo and A. Sengur,
A novel 3D skeleton algorithm based on neutrosophic cost function, Appl. Soft. Comput., 36 (2015), 210-217.
doi: 10.1016/j.asoc.2015.07.025. |
[14] |
International Electrotechnical Commission, Analysis Techniques for System Reliability- Procedures for Failure Mode and Effect Analysis, Geneva, IEC 60812, 1985. |
[15] |
H. A. Khorshidi, I. Gunawan and M. Y. Ibrahim,
Applying UGF concept to enhance the assessment capability of FMEA, Qual. Reliab. Eng. Int., 32 (2016), 1085-1093.
doi: 10.1002/qre.1817. |
[16] |
P. Kraipeerapun and C. C. Fung,
Binary classification using ensemble neural networks and interval neutrosophic sets, Neurocomputing, 72 (2009), 2845-2856.
doi: 10.1016/j.neucom.2008.07.017. |
[17] |
S. Li and W. Zeng,
Risk analysis for the supplier selection problem using failure modes and effects analysis (FMEA), J. Intell. Manuf., 27 (2016), 1309-1321.
doi: 10.1007/s10845-014-0953-0. |
[18] |
H. C. Liu, J. X. You, X. J. Fan and Q. L. Lin,
Failure mode and effects analysis using D numbers and grey relational projection method, Expert Syst. Appl., 41 (2014), 4670-4679.
doi: 10.1016/j.eswa.2014.01.031. |
[19] |
O. Mohsen and N. Fereshteh,
An extended VIKOR method based on entropy measure for the failure modes risk assessment - A case study of the geothermal power plant (GPP), Saf. Sci., 92 (2017), 160-172.
doi: 10.1016/j.ssci.2016.10.006. |
[20] |
H. Safari, Z. Faraji and S. Majidian,
Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR differentiables, J. Intell. Manuf., 27 (2016), 475-486.
doi: 10.1007/s10845-014-0880-0. |
[21] |
R. Sahin and P. D. Liu,
Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information, Neural Comput. Appl., 27 (2016), 2017-2029.
doi: 10.1007/s10700-006-0022-z. |
[22] |
R. Sahin and A. Kucuk,
Subsethood measure for single valued neutrosophic sets, J. Intell. Fuzzy Syst., 29 (2015), 525-530.
doi: 10.3233/ifs-141304. |
[23] |
F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, preprint, arXiv: 0101228. |
[24] |
Z. P. Tian, H. Y. Zhang, J. Wang, J. Q. Wang and X. H. Chen,
Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets, Int. J. Syst. Sci., 47 (2016), 3598-3608.
doi: 10.1080/00207721.2015.1102359. |
[25] |
H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman,
Single valued neutrosophic sets, Multispace Multistructure, 4 (2014), 410-413.
doi: 10.1007/s00357-017-9225-y. |
[26] |
J. Ye,
A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26 (2014), 2459-2466.
doi: 10.3233/IFS-130916. |
[27] |
J. Ye,
Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making, J. Intell. Fuzzy Syst., 26 (2014), 165-172.
doi: 10.3233/IFS-130916. |
[28] |
J. Ye,
Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment, J. Intell. Fuzzy Syst., 42 (2013), 386-394.
doi: 10.1080/03081079.2012.761609. |
[29] |
L. A. Zadeh,
Fuzzy sets, Inf. Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[30] |
E. K. Zavadskas, R. Bausys and M. Lazauskas,
Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set, Sustainability, 7 (2015), 15923-15936.
doi: 10.3390/su71215792. |
[31] |
H. Y. Zhang, J. Q. Wang and X. H. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems, Sci. World J., 2014 (2014), Article ID 645953.
doi: 10.1155/2014/645953. |
[32] |
J. H. Zhao, X. Wang, H. M. Zhang, J. Hu and X. M. Jian,
Side scan sonar image segmentation based on neutrosophic set and quantum-behaved particle swarm optimization algorithm, Mar. Geophys. Res., 37 (2016), 229-241.
doi: 10.1007/s11001-016-9276-1. |
show all references
References:
[1] |
K. T. Atanassov,
Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
doi: 10.1016/S0165-0114(86)80034-3. |
[2] |
P. Biswas, S. Pramanik and B. C. Giri,
TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment, Neural Comput. Appl., 27 (2016), 727-737.
doi: 10.1007/s00521-015-1891-2. |
[3] |
British Standards Institute, Reliability of Systems, Equipment and Components, Guide to Failure Modes, Effects and Criticality Analysis (FMEA and FMECA), Vol. BS 5760-5, British Standards Institute, United Kingdom, 1991. |
[4] |
K. H. Chang,
Evaluate the orderings of risk for failure problems using a more general RPN methodology, Microelectron. Reliab., 49 (2009), 1586-1596.
doi: 10.1016/j.microrel.2009.07.057. |
[5] |
K. H. Chang, A novel reliability calculation method under neutrosophic environments, Ann. Oper. Res., (2021) in press.
doi: 10.1007/s10479-020-03890-4. |
[6] |
K. H. Chang,
A more general risk assessment methodology using soft sets based ranking technique, Soft Comput., 18 (2014), 169-183.
doi: 10.1007/s00500-013-1045-3. |
[7] |
K. H. Chang, Y. C. Chang and P. T. Lai,
Applying the concept of exponential approach to enhance the assessment capability of FMEA, J. Intell. Manuf., 25 (2014), 1413-1427.
doi: 10.1007/s10845-013-0747-9. |
[8] |
Y. C. Chang, K. H. Chang and C. Y. Chen,
Risk assessment by quantifying and prioritizing 5S activity for semiconductor manufacturing, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., 227 (2013), 1874-1887.
doi: 10.1177/0954405413493901. |
[9] |
N. Chanamool and T. Naenna,
Fuzzy FMEA application to improve decision-making process in an emergency department, Appl. Soft. Comput., 43 (2016), 441-453.
doi: 10.1016/j.asoc.2016.01.007. |
[10] |
K. H. Chang,
Generalized multi-attribute failure mode analysis, Neurocomputing, 175 (2016), 90-100.
doi: 10.1016/j.neucom.2015.10.039. |
[11] |
D.C. US Department of Defense Washington, Procedures for Performing a Failure Mode Effects and Criticality Analysis, US MIL-STD-1629A, 1980. |
[12] |
M. Giardina, F. Castiglia and E. Tomarchio,
Risk assessment of component failure modes and human errors using a new FMECA approach: Application in the safety analysis of HDR brachytherapy, J. Radiol. Prot., 34 (2014), 891-914.
doi: 10.1088/0952-4746/34/4/891. |
[13] |
Y. H. Guo and A. Sengur,
A novel 3D skeleton algorithm based on neutrosophic cost function, Appl. Soft. Comput., 36 (2015), 210-217.
doi: 10.1016/j.asoc.2015.07.025. |
[14] |
International Electrotechnical Commission, Analysis Techniques for System Reliability- Procedures for Failure Mode and Effect Analysis, Geneva, IEC 60812, 1985. |
[15] |
H. A. Khorshidi, I. Gunawan and M. Y. Ibrahim,
Applying UGF concept to enhance the assessment capability of FMEA, Qual. Reliab. Eng. Int., 32 (2016), 1085-1093.
doi: 10.1002/qre.1817. |
[16] |
P. Kraipeerapun and C. C. Fung,
Binary classification using ensemble neural networks and interval neutrosophic sets, Neurocomputing, 72 (2009), 2845-2856.
doi: 10.1016/j.neucom.2008.07.017. |
[17] |
S. Li and W. Zeng,
Risk analysis for the supplier selection problem using failure modes and effects analysis (FMEA), J. Intell. Manuf., 27 (2016), 1309-1321.
doi: 10.1007/s10845-014-0953-0. |
[18] |
H. C. Liu, J. X. You, X. J. Fan and Q. L. Lin,
Failure mode and effects analysis using D numbers and grey relational projection method, Expert Syst. Appl., 41 (2014), 4670-4679.
doi: 10.1016/j.eswa.2014.01.031. |
[19] |
O. Mohsen and N. Fereshteh,
An extended VIKOR method based on entropy measure for the failure modes risk assessment - A case study of the geothermal power plant (GPP), Saf. Sci., 92 (2017), 160-172.
doi: 10.1016/j.ssci.2016.10.006. |
[20] |
H. Safari, Z. Faraji and S. Majidian,
Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR differentiables, J. Intell. Manuf., 27 (2016), 475-486.
doi: 10.1007/s10845-014-0880-0. |
[21] |
R. Sahin and P. D. Liu,
Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information, Neural Comput. Appl., 27 (2016), 2017-2029.
doi: 10.1007/s10700-006-0022-z. |
[22] |
R. Sahin and A. Kucuk,
Subsethood measure for single valued neutrosophic sets, J. Intell. Fuzzy Syst., 29 (2015), 525-530.
doi: 10.3233/ifs-141304. |
[23] |
F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, preprint, arXiv: 0101228. |
[24] |
Z. P. Tian, H. Y. Zhang, J. Wang, J. Q. Wang and X. H. Chen,
Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets, Int. J. Syst. Sci., 47 (2016), 3598-3608.
doi: 10.1080/00207721.2015.1102359. |
[25] |
H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman,
Single valued neutrosophic sets, Multispace Multistructure, 4 (2014), 410-413.
doi: 10.1007/s00357-017-9225-y. |
[26] |
J. Ye,
A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26 (2014), 2459-2466.
doi: 10.3233/IFS-130916. |
[27] |
J. Ye,
Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making, J. Intell. Fuzzy Syst., 26 (2014), 165-172.
doi: 10.3233/IFS-130916. |
[28] |
J. Ye,
Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment, J. Intell. Fuzzy Syst., 42 (2013), 386-394.
doi: 10.1080/03081079.2012.761609. |
[29] |
L. A. Zadeh,
Fuzzy sets, Inf. Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[30] |
E. K. Zavadskas, R. Bausys and M. Lazauskas,
Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set, Sustainability, 7 (2015), 15923-15936.
doi: 10.3390/su71215792. |
[31] |
H. Y. Zhang, J. Q. Wang and X. H. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems, Sci. World J., 2014 (2014), Article ID 645953.
doi: 10.1155/2014/645953. |
[32] |
J. H. Zhao, X. Wang, H. M. Zhang, J. Hu and X. M. Jian,
Side scan sonar image segmentation based on neutrosophic set and quantum-behaved particle swarm optimization algorithm, Mar. Geophys. Res., 37 (2016), 229-241.
doi: 10.1007/s11001-016-9276-1. |
Rating | Effect | Severity of effect |
10 | Hazardous without warning | Highest severity ranking of a failure mode, occurring without warning and consequence is hazardous |
9 | Hazardous with warning | Higher severity ranking of a failure mode occurring with warning, consequence is hazardous |
8 | Extreme | Operation of system or product is broken down without compromising safe |
7 | Major | Operation of system or product may be continued but performance of system or product is affected |
6 | Significant | Operation of system or product is continued and performance of system or product is degraded |
5 | Moderate | Performance of system or product is affected seriously and the maintenance is needed |
4 | Low | Performance of system or product is small affected and the maintenance may not be needed |
3 | Minor | System performance and satisfaction with minor effect |
2 | Very minor | System performance and satisfaction with slight effect |
1 | None | No effect |
Rating | Effect | Severity of effect |
10 | Hazardous without warning | Highest severity ranking of a failure mode, occurring without warning and consequence is hazardous |
9 | Hazardous with warning | Higher severity ranking of a failure mode occurring with warning, consequence is hazardous |
8 | Extreme | Operation of system or product is broken down without compromising safe |
7 | Major | Operation of system or product may be continued but performance of system or product is affected |
6 | Significant | Operation of system or product is continued and performance of system or product is degraded |
5 | Moderate | Performance of system or product is affected seriously and the maintenance is needed |
4 | Low | Performance of system or product is small affected and the maintenance may not be needed |
3 | Minor | System performance and satisfaction with minor effect |
2 | Very minor | System performance and satisfaction with slight effect |
1 | None | No effect |
Rating | Probability of failure | Possible failure rates |
10 | Extremely high: failure almost inevitable | |
9 | Very high | 1 in 3 |
8 | Repeated failures | 1 in 8 |
7 | High | 1 in 20 |
6 | Moderately high | 1 in 80 |
5 | Moderate | 1 in 400 |
4 | Relatively low | 1 in 2000 |
3 | Low | 1 in 15,000 |
2 | Remote | 1 in 150,000 |
1 | Nearly impossible |
Rating | Probability of failure | Possible failure rates |
10 | Extremely high: failure almost inevitable | |
9 | Very high | 1 in 3 |
8 | Repeated failures | 1 in 8 |
7 | High | 1 in 20 |
6 | Moderately high | 1 in 80 |
5 | Moderate | 1 in 400 |
4 | Relatively low | 1 in 2000 |
3 | Low | 1 in 15,000 |
2 | Remote | 1 in 150,000 |
1 | Nearly impossible |
Rating | Detection | Likelihood of detection by design control |
10 | Absolute uncertainty | Potential occurring of failure mode cannot be detected in concept, design and process failure mode and effects analysis (FMEA)/mechanism and subsequent failure mode |
9 | Very remote | The possibility of detecting the potential occurring of failure mode is very remote/mechanism and subsequent failure mode |
8 | Remote | The possibility of detecting the potential occurring of failure mode is remote/mechanism and subsequent failure mode |
7 | Very low | The possibility of detecting the potential occurring of failure mode is very low/mechanism and subsequent failure mode |
6 | Low | The possibility of detecting the potential occurring of failure mode is low/mechanism and subsequent failure mode |
5 | Moderate | The possibility of detecting the potential occurring of failure mode is moderate/mechanism and subsequent failure mode |
4 | Moderately high | The possibility of detecting the potential occurring of failure mode is moderately high/mechanism and subsequent failure mode |
3 | High | The possibility of detecting the potential occurring of failure mode is high/mechanism and subsequent failure mode |
2 | Very high | The possibility of detecting the potential occurring of failure mode is very high/mechanism and subsequent failure mode |
1 | Almost certain | The potential occurring of failure mode will be detect/ mechanism and subsequent failure mode |
Rating | Detection | Likelihood of detection by design control |
10 | Absolute uncertainty | Potential occurring of failure mode cannot be detected in concept, design and process failure mode and effects analysis (FMEA)/mechanism and subsequent failure mode |
9 | Very remote | The possibility of detecting the potential occurring of failure mode is very remote/mechanism and subsequent failure mode |
8 | Remote | The possibility of detecting the potential occurring of failure mode is remote/mechanism and subsequent failure mode |
7 | Very low | The possibility of detecting the potential occurring of failure mode is very low/mechanism and subsequent failure mode |
6 | Low | The possibility of detecting the potential occurring of failure mode is low/mechanism and subsequent failure mode |
5 | Moderate | The possibility of detecting the potential occurring of failure mode is moderate/mechanism and subsequent failure mode |
4 | Moderately high | The possibility of detecting the potential occurring of failure mode is moderately high/mechanism and subsequent failure mode |
3 | High | The possibility of detecting the potential occurring of failure mode is high/mechanism and subsequent failure mode |
2 | Very high | The possibility of detecting the potential occurring of failure mode is very high/mechanism and subsequent failure mode |
1 | Almost certain | The potential occurring of failure mode will be detect/ mechanism and subsequent failure mode |
Identification number (ID) | Component | Failure mode | Failure effect |
1 | Stepping motor | Electrical blackout | High-dose-rate (HDR) unit is stopped and dc motor withdraws the source to the safe |
2 | Direct current safety motor | Loss of power | Operator goes into the treatment room (TR) to manually return the source to the safe |
3 | Dwell position distance control device | Stepper motor failure | Source position not correct |
4 | Secondary timer | Electronic fault | Incorrect check of the primary timer |
5 | Backup battery | Power-off | Direct current motor fault |
6 | Backup battery | Operator forgets to charge the battery | Direct current motor fault |
7 | Software | Power-off | Safety and control system fault |
8 | Stop button on the console | Contact fault | During treatment, the stop button on the console did not retract the wire source |
9 | Physicist | Dose calculation errors during treatment planning system (TPS) | Incorrect HDR treatment |
10 | Therapist | Data insertion errors during TPS | Incorrect HDR treatment |
11 | Medical operator | Incorrect patient identification | Incorrect data are used during treatment control system (TCS) |
12 | Medical operator | Incorrect medical application of the catheter or applicator | Incorrect HDR treatment |
13 | Therapist | Error in loading patient information (from the database) | Incorrect data are used during TCS |
14 | Therapist | Error in the data entry for dwell time or dwell position programming | Incorrect data are used during TCS |
Identification number (ID) | Component | Failure mode | Failure effect |
1 | Stepping motor | Electrical blackout | High-dose-rate (HDR) unit is stopped and dc motor withdraws the source to the safe |
2 | Direct current safety motor | Loss of power | Operator goes into the treatment room (TR) to manually return the source to the safe |
3 | Dwell position distance control device | Stepper motor failure | Source position not correct |
4 | Secondary timer | Electronic fault | Incorrect check of the primary timer |
5 | Backup battery | Power-off | Direct current motor fault |
6 | Backup battery | Operator forgets to charge the battery | Direct current motor fault |
7 | Software | Power-off | Safety and control system fault |
8 | Stop button on the console | Contact fault | During treatment, the stop button on the console did not retract the wire source |
9 | Physicist | Dose calculation errors during treatment planning system (TPS) | Incorrect HDR treatment |
10 | Therapist | Data insertion errors during TPS | Incorrect HDR treatment |
11 | Medical operator | Incorrect patient identification | Incorrect data are used during treatment control system (TCS) |
12 | Medical operator | Incorrect medical application of the catheter or applicator | Incorrect HDR treatment |
13 | Therapist | Error in loading patient information (from the database) | Incorrect data are used during TCS |
14 | Therapist | Error in the data entry for dwell time or dwell position programming | Incorrect data are used during TCS |
Level | S | O | D | Single valued neutrosophic |
10 | Hazardous | Extremely high | Absolute uncertainty | (1.00, 0.00, 0.00) |
9 | Serious | Very high | Very remote | (0.90, 0.10, 0.10) |
8 | Extreme | Repeated failures | Remote | (0.80, 0.15, 0.20) |
7 | Major | High | Very low | (0.70, 0.25, 0.30) |
6 | Significant | Moderately high | Low | (0.60, 0.35, 0.40) |
5 | Moderate | Moderate | Moderate | (0.50, 0.50, 0.50) |
4 | Low | Relatively low | Moderately high | (0.40, 0.65, 0.60) |
3 | Minor | Low | High | (0.30, 0.75, 0.70) |
2 | Very minor | Remote | Very high | (0.20, 0.85, 0.80) |
1 | None | Nearly impossible | Almost certain | (0.10, 0.90, 0.90) |
Level | S | O | D | Single valued neutrosophic |
10 | Hazardous | Extremely high | Absolute uncertainty | (1.00, 0.00, 0.00) |
9 | Serious | Very high | Very remote | (0.90, 0.10, 0.10) |
8 | Extreme | Repeated failures | Remote | (0.80, 0.15, 0.20) |
7 | Major | High | Very low | (0.70, 0.25, 0.30) |
6 | Significant | Moderately high | Low | (0.60, 0.35, 0.40) |
5 | Moderate | Moderate | Moderate | (0.50, 0.50, 0.50) |
4 | Low | Relatively low | Moderately high | (0.40, 0.65, 0.60) |
3 | Minor | Low | High | (0.30, 0.75, 0.70) |
2 | Very minor | Remote | Very high | (0.20, 0.85, 0.80) |
1 | None | Nearly impossible | Almost certain | (0.10, 0.90, 0.90) |
ID | S | O | D | |||||||||
TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | |
1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 10 | 10 | 9 | 10 |
2 | 1 | 1 | 1 | 1 | 10 | 10 | 9 | 9 | 2 | 2 | 1 | 2 |
3 | 1 | 2 | 1 | 1 | 8 | 7 | 8 | 8 | 3 | 2 | 3 | 4 |
4 | 3 | 2 | 3 | 3 | 7 | 7 | 8 | 6 | 2 | 2 | 2 | 3 |
5 | 4 | 4 | 3 | 3 | 9 | 8 | 9 | 9 | 2 | 1 | 2 | 2 |
6 | 3 | 2 | 2 | 3 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 |
7 | 1 | 1 | 2 | 1 | 9 | 8 | 8 | 9 | 9 | 8 | 9 | 9 |
8 | 1 | 1 | 1 | 2 | 10 | 9 | 10 | 10 | 9 | 9 | 9 | 10 |
9 | 4 | 3 | 3 | 5 | 9 | 8 | 8 | 9 | 3 | 2 | 3 | 3 |
10 | 5 | 6 | 4 | 5 | 9 | 9 | 9 | 10 | 2 | 3 | 2 | 2 |
11 | 5 | 5 | * | 6 | 9 | 8 | * | 9 | 3 | 4 | * | 3 |
12 | 2 | 3 | * | 2 | 1 | 1 | * | 2 | 10 | 9 | * | 10 |
13 | 5 | 5 | 4 | 6 | 9 | 10 | 10 | 8 | 2 | 2 | 2 | 3 |
14 | 4 | 4 | 5 | 4 | 9 | 9 | 10 | 9 | 2 | 2 | 1 | 2 |
* Missing or incomplete information |
ID | S | O | D | |||||||||
TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | |
1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 10 | 10 | 9 | 10 |
2 | 1 | 1 | 1 | 1 | 10 | 10 | 9 | 9 | 2 | 2 | 1 | 2 |
3 | 1 | 2 | 1 | 1 | 8 | 7 | 8 | 8 | 3 | 2 | 3 | 4 |
4 | 3 | 2 | 3 | 3 | 7 | 7 | 8 | 6 | 2 | 2 | 2 | 3 |
5 | 4 | 4 | 3 | 3 | 9 | 8 | 9 | 9 | 2 | 1 | 2 | 2 |
6 | 3 | 2 | 2 | 3 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 |
7 | 1 | 1 | 2 | 1 | 9 | 8 | 8 | 9 | 9 | 8 | 9 | 9 |
8 | 1 | 1 | 1 | 2 | 10 | 9 | 10 | 10 | 9 | 9 | 9 | 10 |
9 | 4 | 3 | 3 | 5 | 9 | 8 | 8 | 9 | 3 | 2 | 3 | 3 |
10 | 5 | 6 | 4 | 5 | 9 | 9 | 9 | 10 | 2 | 3 | 2 | 2 |
11 | 5 | 5 | * | 6 | 9 | 8 | * | 9 | 3 | 4 | * | 3 |
12 | 2 | 3 | * | 2 | 1 | 1 | * | 2 | 10 | 9 | * | 10 |
13 | 5 | 5 | 4 | 6 | 9 | 10 | 10 | 8 | 2 | 2 | 2 | 3 |
14 | 4 | 4 | 5 | 4 | 9 | 9 | 10 | 9 | 2 | 2 | 1 | 2 |
* Missing or incomplete information |
ID | S | O | D |
1 | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.20, 0.85, 0.80) |
3 | (0.10, 0.90, 0.90) | (0.80, 0.15, 0.20) | (0.30, 0.75, 0.70) |
4 | (0.30, 0.75, 0.70) | (0.70, 0.25, 0.30) | (0.20, 0.85, 0.80) |
5 | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
6 | (0.30, 0.75, 0.70) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.10, 0.90, 0.90) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) |
8 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) |
9 | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) |
10 | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
11 | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) |
12 | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) |
13 | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
14 | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
ID | S | O | D |
1 | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.20, 0.85, 0.80) |
3 | (0.10, 0.90, 0.90) | (0.80, 0.15, 0.20) | (0.30, 0.75, 0.70) |
4 | (0.30, 0.75, 0.70) | (0.70, 0.25, 0.30) | (0.20, 0.85, 0.80) |
5 | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
6 | (0.30, 0.75, 0.70) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.10, 0.90, 0.90) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) |
8 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) |
9 | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) |
10 | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
11 | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) |
12 | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) |
13 | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
14 | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
ID | S | O | D | ||||||
1 | 0.267 | 0.283 | 0.267 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.267 | 0.283 | 0.267 |
3 | 0.300 | 0.300 | 0.300 | 0.067 | 0.050 | 0.067 | 0.233 | 0.250 | 0.233 |
4 | 0.233 | 0.250 | 0.233 | 0.100 | 0.083 | 0.100 | 0.267 | 0.283 | 0.267 |
5 | 0.200 | 0.217 | 0.200 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
6 | 0.233 | 0.250 | 0.233 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.300 | 0.300 | 0.300 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
8 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.033 | 0.033 | 0.033 |
9 | 0.200 | 0.217 | 0.200 | 0.033 | 0.033 | 0.033 | 0.233 | 0.250 | 0.233 |
10 | 0.167 | 0.167 | 0.167 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
11 | 0.167 | 0.167 | 0.167 | 0.033 | 0.033 | 0.033 | 0.233 | 0.250 | 0.233 |
12 | 0.267 | 0.283 | 0.267 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 |
13 | 0.167 | 0.167 | 0.167 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
14 | 0.200 | 0.217 | 0.200 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
ID | S | O | D | ||||||
1 | 0.267 | 0.283 | 0.267 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.267 | 0.283 | 0.267 |
3 | 0.300 | 0.300 | 0.300 | 0.067 | 0.050 | 0.067 | 0.233 | 0.250 | 0.233 |
4 | 0.233 | 0.250 | 0.233 | 0.100 | 0.083 | 0.100 | 0.267 | 0.283 | 0.267 |
5 | 0.200 | 0.217 | 0.200 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
6 | 0.233 | 0.250 | 0.233 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.300 | 0.300 | 0.300 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 |
8 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.033 | 0.033 | 0.033 |
9 | 0.200 | 0.217 | 0.200 | 0.033 | 0.033 | 0.033 | 0.233 | 0.250 | 0.233 |
10 | 0.167 | 0.167 | 0.167 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
11 | 0.167 | 0.167 | 0.167 | 0.033 | 0.033 | 0.033 | 0.233 | 0.250 | 0.233 |
12 | 0.267 | 0.283 | 0.267 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 |
13 | 0.167 | 0.167 | 0.167 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
14 | 0.200 | 0.217 | 0.200 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
ID | S | O | D | |||||||||
TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | |
1 | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) |
3 | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.80, 0.15, 0.20) | (0.70, 0.25, 0.30) | (0.80, 0.15, 0.20) | (0.80, 0.15, 0.20) | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.40, 0.65, 0.60) |
4 | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) | (0.70, 0.25, 0.30) | (0.70, 0.25, 0.30) | (0.80, 0.15, 0.20) | (0.60, 0.35, 0.40) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) |
5 | (0.40, 0.65, 0.60) | (0.40, 0.65, 0.60) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) |
6 | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) |
7 | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) |
8 | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) |
9 | (0.40, 0.65, 0.60) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) |
10 | (0.50, 0.50, 0.50) | (0.60, 0.35, 0.40) | (0.40, 0.65, 0.60) | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) |
11 | (0.50, 0.50, 0.50) | (0.50, 0.50, 0.50) | (*, *, *) | (0.60, 0.35, 0.40) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (*, *, *) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) | (0.40, 0.65, 0.60) | (*, *, *) | (0.30, 0.75, 0.70) |
12 | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (*, *, *) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (*, *, *) | (0.20, 0.85, 0.80) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (*, *, *) | (1.00, 0.00, 0.00) |
13 | (0.50, 0.50, 0.50) | (0.50, 0.50, 0.50) | (0.40, 0.65, 0.60) | (0.60, 0.35, 0.40) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.80, 0.15, 0.20) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) |
14 | (0.40, 0.65, 0.60) | (0.40, 0.65, 0.60) | (0.50, 0.50, 0.50) | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) |
ID | S | O | D | |||||||||
TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | TM1 | TM2 | TM3 | TM4 | |
1 | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) |
3 | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.80, 0.15, 0.20) | (0.70, 0.25, 0.30) | (0.80, 0.15, 0.20) | (0.80, 0.15, 0.20) | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.40, 0.65, 0.60) |
4 | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) | (0.70, 0.25, 0.30) | (0.70, 0.25, 0.30) | (0.80, 0.15, 0.20) | (0.60, 0.35, 0.40) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) |
5 | (0.40, 0.65, 0.60) | (0.40, 0.65, 0.60) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) |
6 | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) |
7 | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) |
8 | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) |
9 | (0.40, 0.65, 0.60) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (0.80, 0.15, 0.20) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.30, 0.75, 0.70) |
10 | (0.50, 0.50, 0.50) | (0.60, 0.35, 0.40) | (0.40, 0.65, 0.60) | (0.50, 0.50, 0.50) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) |
11 | (0.50, 0.50, 0.50) | (0.50, 0.50, 0.50) | (*, *, *) | (0.60, 0.35, 0.40) | (0.90, 0.10, 0.10) | (0.80, 0.15, 0.20) | (*, *, *) | (0.90, 0.10, 0.10) | (0.30, 0.75, 0.70) | (0.40, 0.65, 0.60) | (*, *, *) | (0.30, 0.75, 0.70) |
12 | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) | (*, *, *) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.10, 0.90, 0.90) | (*, *, *) | (0.20, 0.85, 0.80) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (*, *, *) | (1.00, 0.00, 0.00) |
13 | (0.50, 0.50, 0.50) | (0.50, 0.50, 0.50) | (0.40, 0.65, 0.60) | (0.60, 0.35, 0.40) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) | (0.80, 0.15, 0.20) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.30, 0.75, 0.70) |
14 | (0.40, 0.65, 0.60) | (0.40, 0.65, 0.60) | (0.50, 0.50, 0.50) | (0.40, 0.65, 0.60) | (0.90, 0.10, 0.10) | (0.90, 0.10, 0.10) | (1.00, 0.00, 0.00) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) | (0.20, 0.85, 0.80) | (0.10, 0.90, 0.90) | (0.20, 0.85, 0.80) |
ID | Minimum operator | ||||||||
S | O | D | |||||||
11 | 0.50 | 0.50 | 0.50 | 0.80 | 0.15 | 0.20 | 0.30 | 0.75 | 0.70 |
12 | 0.20 | 0.85 | 0.80 | 0.10 | 0.90 | 0.90 | 0.90 | 0.10 | 0.10 |
Averaging operator | |||||||||
11 | 0.536 | 0.444 | 0.464 | 0.874 | 0.114 | 0.126 | 0.335 | 0.715 | 0.665 |
12 | 0.235 | 0.815 | 0.765 | 0.135 | 0.883 | 0.865 | 1.000 | 0.000 | 0.000 |
Maximum Operator | |||||||||
11 | 0.60 | 0.35 | 0.40 | 0.90 | 0.10 | 0.10 | 0.40 | 0.65 | 0.60 |
12 | 0.30 | 0.75 | 0.70 | 0.20 | 0.85 | 0.80 | 1.00 | 0.00 | 0.00 |
ID | Minimum operator | ||||||||
S | O | D | |||||||
11 | 0.50 | 0.50 | 0.50 | 0.80 | 0.15 | 0.20 | 0.30 | 0.75 | 0.70 |
12 | 0.20 | 0.85 | 0.80 | 0.10 | 0.90 | 0.90 | 0.90 | 0.10 | 0.10 |
Averaging operator | |||||||||
11 | 0.536 | 0.444 | 0.464 | 0.874 | 0.114 | 0.126 | 0.335 | 0.715 | 0.665 |
12 | 0.235 | 0.815 | 0.765 | 0.135 | 0.883 | 0.865 | 1.000 | 0.000 | 0.000 |
Maximum Operator | |||||||||
11 | 0.60 | 0.35 | 0.40 | 0.90 | 0.10 | 0.10 | 0.40 | 0.65 | 0.60 |
12 | 0.30 | 0.75 | 0.70 | 0.20 | 0.85 | 0.80 | 1.00 | 0.00 | 0.00 |
ID | S | O | D |
1 | (0.18, 0.86, 0.82) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
3 | (0.13, 0.89, 0.87) | (0.78, 0.17, 0.22) | (0.30, 0.75, 0.70) |
4 | (0.28, 0.77, 0.72) | (0.71, 0.24, 0.29) | (0.23, 0.82, 0.77) |
5 | (0.35, 0.70, 0.65) | (0.88, 0.11, 0.12) | (0.18, 0.86, 0.82) |
6 | (0.25, 0.80, 0.75) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.13, 0.89, 0.87) | (0.86, 0.12, 0.14) | (0.88, 0.11, 0.12) |
8 | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) |
9 | (0.38, 0.65, 0.62) | (0.86, 0.12, 0.14) | (0.28, 0.77, 0.72) |
10 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
11 | (0.53, 0.46, 0.47) | (0.86, 0.12, 0.14) | (0.33, 0.72, 0.67) |
12 | (0.23, 0.82, 0.77) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
13 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
14 | (0.43, 0.61, 0.57) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
ID | S | O | D |
1 | (0.18, 0.86, 0.82) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
3 | (0.13, 0.89, 0.87) | (0.78, 0.17, 0.22) | (0.30, 0.75, 0.70) |
4 | (0.28, 0.77, 0.72) | (0.71, 0.24, 0.29) | (0.23, 0.82, 0.77) |
5 | (0.35, 0.70, 0.65) | (0.88, 0.11, 0.12) | (0.18, 0.86, 0.82) |
6 | (0.25, 0.80, 0.75) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.13, 0.89, 0.87) | (0.86, 0.12, 0.14) | (0.88, 0.11, 0.12) |
8 | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) |
9 | (0.38, 0.65, 0.62) | (0.86, 0.12, 0.14) | (0.28, 0.77, 0.72) |
10 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
11 | (0.53, 0.46, 0.47) | (0.86, 0.12, 0.14) | (0.33, 0.72, 0.67) |
12 | (0.23, 0.82, 0.77) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
13 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
14 | (0.43, 0.61, 0.57) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
ID | S | O | D |
1 | (0.18, 0.86, 0.82) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
3 | (0.13, 0.89, 0.87) | (0.78, 0.17, 0.22) | (0.30, 0.75, 0.70) |
4 | (0.28, 0.77, 0.72) | (0.71, 0.24, 0.29) | (0.23, 0.82, 0.77) |
5 | (0.35, 0.70, 0.65) | (0.88, 0.11, 0.12) | (0.18, 0.86, 0.82) |
6 | (0.25, 0.80, 0.75) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.13, 0.89, 0.87) | (0.86, 0.12, 0.14) | (0.88, 0.11, 0.12) |
8 | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) |
9 | (0.38, 0.65, 0.62) | (0.86, 0.12, 0.14) | (0.28, 0.77, 0.72) |
10 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
11 | (0.54, 0.44, 0.46) | (0.87, 0.11, 0.13) | (0.34, 0.72, 0.66) |
12 | (0.23, 0.82, 0.77) | (0.13, 0.88, 0.87) | (1.00, 0.00, 0.00) |
13 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
14 | (0.43, 0.61, 0.57) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
ID | S | O | D |
1 | (0.18, 0.86, 0.82) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
3 | (0.13, 0.89, 0.87) | (0.78, 0.17, 0.22) | (0.30, 0.75, 0.70) |
4 | (0.28, 0.77, 0.72) | (0.71, 0.24, 0.29) | (0.23, 0.82, 0.77) |
5 | (0.35, 0.70, 0.65) | (0.88, 0.11, 0.12) | (0.18, 0.86, 0.82) |
6 | (0.25, 0.80, 0.75) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.13, 0.89, 0.87) | (0.86, 0.12, 0.14) | (0.88, 0.11, 0.12) |
8 | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) |
9 | (0.38, 0.65, 0.62) | (0.86, 0.12, 0.14) | (0.28, 0.77, 0.72) |
10 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
11 | (0.54, 0.44, 0.46) | (0.87, 0.11, 0.13) | (0.34, 0.72, 0.66) |
12 | (0.23, 0.82, 0.77) | (0.13, 0.88, 0.87) | (1.00, 0.00, 0.00) |
13 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
14 | (0.43, 0.61, 0.57) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
ID | S | O | D |
1 | (0.18, 0.86, 0.82) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
3 | (0.13, 0.89, 0.87) | (0.78, 0.17, 0.22) | (0.30, 0.75, 0.70) |
4 | (0.28, 0.77, 0.72) | (0.71, 0.24, 0.29) | (0.23, 0.82, 0.77) |
5 | (0.35, 0.70, 0.65) | (0.88, 0.11, 0.12) | (0.18, 0.86, 0.82) |
6 | (0.25, 0.80, 0.75) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.13, 0.89, 0.87) | (0.86, 0.12, 0.14) | (0.88, 0.11, 0.12) |
8 | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) |
9 | (0.38, 0.65, 0.62) | (0.86, 0.12, 0.14) | (0.28, 0.77, 0.72) |
10 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
11 | (0.55, 0.42, 0.45) | (0.88, 0.11, 0.12) | (0.35, 0.70, 0.65) |
12 | (0.25, 0.80, 0.75) | (0.15, 0.87, 0.85) | (1.00, 0.00, 0.00) |
13 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
14 | (0.43, 0.61, 0.57) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
ID | S | O | D |
1 | (0.18, 0.86, 0.82) | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) |
2 | (0.10, 0.90, 0.90) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
3 | (0.13, 0.89, 0.87) | (0.78, 0.17, 0.22) | (0.30, 0.75, 0.70) |
4 | (0.28, 0.77, 0.72) | (0.71, 0.24, 0.29) | (0.23, 0.82, 0.77) |
5 | (0.35, 0.70, 0.65) | (0.88, 0.11, 0.12) | (0.18, 0.86, 0.82) |
6 | (0.25, 0.80, 0.75) | (0.90, 0.10, 0.10) | (0.20, 0.85, 0.80) |
7 | (0.13, 0.89, 0.87) | (0.86, 0.12, 0.14) | (0.88, 0.11, 0.12) |
8 | (0.13, 0.89, 0.87) | (1.00, 0.00, 0.00) | (1.00, 0.00, 0.00) |
9 | (0.38, 0.65, 0.62) | (0.86, 0.12, 0.14) | (0.28, 0.77, 0.72) |
10 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
11 | (0.55, 0.42, 0.45) | (0.88, 0.11, 0.12) | (0.35, 0.70, 0.65) |
12 | (0.25, 0.80, 0.75) | (0.15, 0.87, 0.85) | (1.00, 0.00, 0.00) |
13 | (0.51, 0.49, 0.49) | (1.00, 0.00, 0.00) | (0.23, 0.82, 0.77) |
14 | (0.43, 0.61, 0.57) | (1.00, 0.00, 0.00) | (0.18, 0.86, 0.82) |
ID | S | O | D | ||||||
1 | 0.275 | 0.287 | 0.275 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
3 | 0.291 | 0.296 | 0.291 | 0.074 | 0.057 | 0.074 | 0.232 | 0.249 | 0.232 |
4 | 0.241 | 0.258 | 0.241 | 0.097 | 0.080 | 0.097 | 0.258 | 0.275 | 0.258 |
5 | 0.216 | 0.233 | 0.216 | 0.040 | 0.037 | 0.040 | 0.275 | 0.287 | 0.275 |
6 | 0.249 | 0.266 | 0.249 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.291 | 0.296 | 0.291 | 0.047 | 0.041 | 0.047 | 0.040 | 0.037 | 0.040 |
8 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
9 | 0.206 | 0.218 | 0.206 | 0.047 | 0.041 | 0.047 | 0.241 | 0.258 | 0.241 |
10 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
11 | 0.158 | 0.152 | 0.158 | 0.047 | 0.041 | 0.047 | 0.225 | 0.241 | 0.225 |
12 | 0.258 | 0.275 | 0.258 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
13 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
14 | 0.191 | 0.203 | 0.191 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
ID | S | O | D | ||||||
1 | 0.275 | 0.287 | 0.275 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
3 | 0.291 | 0.296 | 0.291 | 0.074 | 0.057 | 0.074 | 0.232 | 0.249 | 0.232 |
4 | 0.241 | 0.258 | 0.241 | 0.097 | 0.080 | 0.097 | 0.258 | 0.275 | 0.258 |
5 | 0.216 | 0.233 | 0.216 | 0.040 | 0.037 | 0.040 | 0.275 | 0.287 | 0.275 |
6 | 0.249 | 0.266 | 0.249 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.291 | 0.296 | 0.291 | 0.047 | 0.041 | 0.047 | 0.040 | 0.037 | 0.040 |
8 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
9 | 0.206 | 0.218 | 0.206 | 0.047 | 0.041 | 0.047 | 0.241 | 0.258 | 0.241 |
10 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
11 | 0.158 | 0.152 | 0.158 | 0.047 | 0.041 | 0.047 | 0.225 | 0.241 | 0.225 |
12 | 0.258 | 0.275 | 0.258 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
13 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
14 | 0.191 | 0.203 | 0.191 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
ID | S | O | D | ||||||
1 | 0.275 | 0.287 | 0.275 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
3 | 0.291 | 0.296 | 0.291 | 0.074 | 0.057 | 0.074 | 0.232 | 0.249 | 0.232 |
4 | 0.241 | 0.258 | 0.241 | 0.097 | 0.080 | 0.097 | 0.258 | 0.275 | 0.258 |
5 | 0.216 | 0.233 | 0.216 | 0.040 | 0.037 | 0.040 | 0.275 | 0.287 | 0.275 |
6 | 0.249 | 0.266 | 0.249 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.291 | 0.296 | 0.291 | 0.047 | 0.041 | 0.047 | 0.040 | 0.037 | 0.040 |
8 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
9 | 0.206 | 0.218 | 0.206 | 0.047 | 0.041 | 0.047 | 0.241 | 0.258 | 0.241 |
10 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
11 | 0.155 | 0.148 | 0.155 | 0.042 | 0.038 | 0.042 | 0.222 | 0.238 | 0.222 |
12 | 0.255 | 0.272 | 0.255 | 0.288 | 0.294 | 0.288 | 0.000 | 0.000 | 0.000 |
13 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
14 | 0.191 | 0.203 | 0.191 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
ID | S | O | D | ||||||
1 | 0.275 | 0.287 | 0.275 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
3 | 0.291 | 0.296 | 0.291 | 0.074 | 0.057 | 0.074 | 0.232 | 0.249 | 0.232 |
4 | 0.241 | 0.258 | 0.241 | 0.097 | 0.080 | 0.097 | 0.258 | 0.275 | 0.258 |
5 | 0.216 | 0.233 | 0.216 | 0.040 | 0.037 | 0.040 | 0.275 | 0.287 | 0.275 |
6 | 0.249 | 0.266 | 0.249 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.291 | 0.296 | 0.291 | 0.047 | 0.041 | 0.047 | 0.040 | 0.037 | 0.040 |
8 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
9 | 0.206 | 0.218 | 0.206 | 0.047 | 0.041 | 0.047 | 0.241 | 0.258 | 0.241 |
10 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
11 | 0.155 | 0.148 | 0.155 | 0.042 | 0.038 | 0.042 | 0.222 | 0.238 | 0.222 |
12 | 0.255 | 0.272 | 0.255 | 0.288 | 0.294 | 0.288 | 0.000 | 0.000 | 0.000 |
13 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
14 | 0.191 | 0.203 | 0.191 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
ID | S | O | D | ||||||
1 | 0.275 | 0.287 | 0.275 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
3 | 0.291 | 0.296 | 0.291 | 0.074 | 0.057 | 0.074 | 0.232 | 0.249 | 0.232 |
4 | 0.241 | 0.258 | 0.241 | 0.097 | 0.080 | 0.097 | 0.258 | 0.275 | 0.258 |
5 | 0.216 | 0.233 | 0.216 | 0.040 | 0.037 | 0.040 | 0.275 | 0.287 | 0.275 |
6 | 0.249 | 0.266 | 0.249 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.291 | 0.296 | 0.291 | 0.047 | 0.041 | 0.047 | 0.040 | 0.037 | 0.040 |
8 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
9 | 0.206 | 0.218 | 0.206 | 0.047 | 0.041 | 0.047 | 0.241 | 0.258 | 0.241 |
10 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
11 | 0.149 | 0.139 | 0.149 | 0.040 | 0.037 | 0.040 | 0.216 | 0.233 | 0.216 |
12 | 0.249 | 0.266 | 0.249 | 0.283 | 0.292 | 0.283 | 0.000 | 0.000 | 0.000 |
13 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
14 | 0.191 | 0.203 | 0.191 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
ID | S | O | D | ||||||
1 | 0.275 | 0.287 | 0.275 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 |
2 | 0.300 | 0.300 | 0.300 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
3 | 0.291 | 0.296 | 0.291 | 0.074 | 0.057 | 0.074 | 0.232 | 0.249 | 0.232 |
4 | 0.241 | 0.258 | 0.241 | 0.097 | 0.080 | 0.097 | 0.258 | 0.275 | 0.258 |
5 | 0.216 | 0.233 | 0.216 | 0.040 | 0.037 | 0.040 | 0.275 | 0.287 | 0.275 |
6 | 0.249 | 0.266 | 0.249 | 0.033 | 0.033 | 0.033 | 0.267 | 0.283 | 0.267 |
7 | 0.291 | 0.296 | 0.291 | 0.047 | 0.041 | 0.047 | 0.040 | 0.037 | 0.040 |
8 | 0.291 | 0.296 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
9 | 0.206 | 0.218 | 0.206 | 0.047 | 0.041 | 0.047 | 0.241 | 0.258 | 0.241 |
10 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
11 | 0.149 | 0.139 | 0.149 | 0.040 | 0.037 | 0.040 | 0.216 | 0.233 | 0.216 |
12 | 0.249 | 0.266 | 0.249 | 0.283 | 0.292 | 0.283 | 0.000 | 0.000 | 0.000 |
13 | 0.165 | 0.163 | 0.165 | 0.000 | 0.000 | 0.000 | 0.258 | 0.275 | 0.258 |
14 | 0.191 | 0.203 | 0.191 | 0.000 | 0.000 | 0.000 | 0.275 | 0.287 | 0.275 |
ID | S | O | D | RPN [4,12] | Ranking RPN [4,12] | Ranking subsethood measure [22] | Ranking |
Ranking |
Ranking |
Ranking |
||||||
1 | 2 | 1 | 10 | 20 | 12 | 0.806 | 10 | 0.865 | 10 | 0.449 | 13 | 0.572 | 10 | 0.702 | 12 | |
2 | 1 | 10 | 2 | 20 | 12 | 0.806 | 10 | 0.865 | 10 | 0.475 | 12 | 0.572 | 10 | 0.702 | 12 | |
3 | 1 | 8 | 3 | 24 | 11 | 0.794 | 13 | 0.856 | 13 | 0.514 | 9 | 0.600 | 13 | 0.673 | 11 | |
4 | 3 | 7 | 2 | 42 | 10 | 0.789 | 14 | 0.854 | 14 | 0.485 | 11 | 0.606 | 14 | 0.649 | 10 | |
5 | 4 | 9 | 2 | 72 | 7 | 0.822 | 7 | 0.885 | 7 | 0.520 | 7 | 0.511 | 7 | 0.594 | 7 | |
6 | 3 | 9 | 2 | 54 | 9 | 0.811 | 9 | 0.874 | 9 | 0.508 | 10 | 0.544 | 9 | 0.630 | 9 | |
7 | 1 | 9 | 9 | 81 | 6 | 0.878 | 2 | 0.933 | 2 | 0.755 | 2 | 0.367 | 2 | 0.526 | 3 | |
8 | 1 | 10 | 9 | 90 | 3 | 0.889 | 1 | 0.944 | 1 | 0.762 | 1 | 0.333 | 1 | 0.523 | 2 | |
9 | 4 | 9 | 3 | 108 | 2 | 0.833 | 6 | 0.896 | 6 | 0.576 | 4 | 0.478 | 6 | 0.549 | 4 | |
10 | 5 | 9 | 2 | 90 | 3 | 0.839 | 4 | 0.898 | 4 | 0.525 | 5 | 0.472 | 4 | 0.556 | 5 | |
11 | 5 | 9 | 3 | 135 | 1 | 0.850 | 3 | 0.909 | 3 | 0.582 | 3 | 0.439 | 3 | 0.508 | 1 | |
12 | 2 | 1 | 10 | 20 | 12 | 0.806 | 10 | 0.865 | 10 | 0.449 | 13 | 0.572 | 10 | 0.702 | 12 | |
13 | 5 | 9 | 2 | 90 | 3 | 0.839 | 4 | 0.898 | 4 | 0.525 | 5 | 0.472 | 4 | 0.556 | 5 | |
14 | 4 | 9 | 2 | 72 | 7 | 0.822 | 7 | 0.885 | 7 | 0.520 | 7 | 0.511 | 7 | 0.594 | 7 | |
ID | S | O | D | Ranking |
Proposed method | |||||||||||
Minimum operator | Ranking minimum operator | Averaging operator | Ranking averaging operators | Maximum Operator | Ranking maximum operator | |||||||||||
1 | 2 | 1 | 10 | 0.86 | 12 | 0.806 | 10 | 0.806 | 10 | 0.806 | 10 | |||||
2 | 1 | 10 | 2 | 0.86 | 12 | 0.804 | 12 | 0.804 | 12 | 0.804 | 12 | |||||
3 | 1 | 8 | 3 | 1.05 | 11 | 0.794 | 13 | 0.794 | 13 | 0.794 | 13 | |||||
4 | 3 | 7 | 2 | 1.18 | 10 | 0.790 | 14 | 0.790 | 14 | 0.790 | 14 | |||||
5 | 4 | 9 | 2 | 1.43 | 7 | 0.813 | 8 | 0.813 | 8 | 0.813 | 9 | |||||
6 | 3 | 9 | 2 | 1.21 | 9 | 0.806 | 10 | 0.806 | 10 | 0.806 | 10 | |||||
7 | 1 | 9 | 9 | 1.79 | 2 | 0.872 | 2 | 0.872 | 2 | 0.872 | 2 | |||||
8 | 1 | 10 | 9 | 1.72 | 3 | 0.901 | 1 | 0.901 | 1 | 0.901 | 1 | |||||
9 | 4 | 9 | 3 | 1.69 | 6 | 0.826 | 7 | 0.826 | 7 | 0.826 | 7 | |||||
10 | 5 | 9 | 2 | 1.71 | 4 | 0.853 | 3 | 0.853 | 4 | 0.853 | 4 | |||||
11 | 5 | 9 | 3 | 2.02 | 1 | 0.851 | 5 | 0.855 | 3 | 0.860 | 3 | |||||
12 | 2 | 1 | 10 | 0.86 | 12 | 0.810 | 9 | 0.811 | 9 | 0.814 | 8 | |||||
13 | 5 | 9 | 2 | 1.71 | 4 | 0.853 | 3 | 0.853 | 4 | 0.853 | 4 | |||||
14 | 4 | 9 | 2 | 1.43 | 7 | 0.837 | 6 | 0.837 | 6 | 0.837 | 6 |
ID | S | O | D | RPN [4,12] | Ranking RPN [4,12] | Ranking subsethood measure [22] | Ranking |
Ranking |
Ranking |
Ranking |
||||||
1 | 2 | 1 | 10 | 20 | 12 | 0.806 | 10 | 0.865 | 10 | 0.449 | 13 | 0.572 | 10 | 0.702 | 12 | |
2 | 1 | 10 | 2 | 20 | 12 | 0.806 | 10 | 0.865 | 10 | 0.475 | 12 | 0.572 | 10 | 0.702 | 12 | |
3 | 1 | 8 | 3 | 24 | 11 | 0.794 | 13 | 0.856 | 13 | 0.514 | 9 | 0.600 | 13 | 0.673 | 11 | |
4 | 3 | 7 | 2 | 42 | 10 | 0.789 | 14 | 0.854 | 14 | 0.485 | 11 | 0.606 | 14 | 0.649 | 10 | |
5 | 4 | 9 | 2 | 72 | 7 | 0.822 | 7 | 0.885 | 7 | 0.520 | 7 | 0.511 | 7 | 0.594 | 7 | |
6 | 3 | 9 | 2 | 54 | 9 | 0.811 | 9 | 0.874 | 9 | 0.508 | 10 | 0.544 | 9 | 0.630 | 9 | |
7 | 1 | 9 | 9 | 81 | 6 | 0.878 | 2 | 0.933 | 2 | 0.755 | 2 | 0.367 | 2 | 0.526 | 3 | |
8 | 1 | 10 | 9 | 90 | 3 | 0.889 | 1 | 0.944 | 1 | 0.762 | 1 | 0.333 | 1 | 0.523 | 2 | |
9 | 4 | 9 | 3 | 108 | 2 | 0.833 | 6 | 0.896 | 6 | 0.576 | 4 | 0.478 | 6 | 0.549 | 4 | |
10 | 5 | 9 | 2 | 90 | 3 | 0.839 | 4 | 0.898 | 4 | 0.525 | 5 | 0.472 | 4 | 0.556 | 5 | |
11 | 5 | 9 | 3 | 135 | 1 | 0.850 | 3 | 0.909 | 3 | 0.582 | 3 | 0.439 | 3 | 0.508 | 1 | |
12 | 2 | 1 | 10 | 20 | 12 | 0.806 | 10 | 0.865 | 10 | 0.449 | 13 | 0.572 | 10 | 0.702 | 12 | |
13 | 5 | 9 | 2 | 90 | 3 | 0.839 | 4 | 0.898 | 4 | 0.525 | 5 | 0.472 | 4 | 0.556 | 5 | |
14 | 4 | 9 | 2 | 72 | 7 | 0.822 | 7 | 0.885 | 7 | 0.520 | 7 | 0.511 | 7 | 0.594 | 7 | |
ID | S | O | D | Ranking |
Proposed method | |||||||||||
Minimum operator | Ranking minimum operator | Averaging operator | Ranking averaging operators | Maximum Operator | Ranking maximum operator | |||||||||||
1 | 2 | 1 | 10 | 0.86 | 12 | 0.806 | 10 | 0.806 | 10 | 0.806 | 10 | |||||
2 | 1 | 10 | 2 | 0.86 | 12 | 0.804 | 12 | 0.804 | 12 | 0.804 | 12 | |||||
3 | 1 | 8 | 3 | 1.05 | 11 | 0.794 | 13 | 0.794 | 13 | 0.794 | 13 | |||||
4 | 3 | 7 | 2 | 1.18 | 10 | 0.790 | 14 | 0.790 | 14 | 0.790 | 14 | |||||
5 | 4 | 9 | 2 | 1.43 | 7 | 0.813 | 8 | 0.813 | 8 | 0.813 | 9 | |||||
6 | 3 | 9 | 2 | 1.21 | 9 | 0.806 | 10 | 0.806 | 10 | 0.806 | 10 | |||||
7 | 1 | 9 | 9 | 1.79 | 2 | 0.872 | 2 | 0.872 | 2 | 0.872 | 2 | |||||
8 | 1 | 10 | 9 | 1.72 | 3 | 0.901 | 1 | 0.901 | 1 | 0.901 | 1 | |||||
9 | 4 | 9 | 3 | 1.69 | 6 | 0.826 | 7 | 0.826 | 7 | 0.826 | 7 | |||||
10 | 5 | 9 | 2 | 1.71 | 4 | 0.853 | 3 | 0.853 | 4 | 0.853 | 4 | |||||
11 | 5 | 9 | 3 | 2.02 | 1 | 0.851 | 5 | 0.855 | 3 | 0.860 | 3 | |||||
12 | 2 | 1 | 10 | 0.86 | 12 | 0.810 | 9 | 0.811 | 9 | 0.814 | 8 | |||||
13 | 5 | 9 | 2 | 1.71 | 4 | 0.853 | 3 | 0.853 | 4 | 0.853 | 4 | |||||
14 | 4 | 9 | 2 | 1.43 | 7 | 0.837 | 6 | 0.837 | 6 | 0.837 | 6 |
[1] |
Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047 |
[2] |
Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028 |
[3] |
Harish Garg, Dimple Rani. Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2279-2306. doi: 10.3934/jimo.2020069 |
[4] |
P. C. Jha, Sugandha Aggarwal, Anshu Gupta, Ruhul Sarker. Multi-criteria media mix decision model for advertising a single product with segment specific and mass media. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1367-1389. doi: 10.3934/jimo.2016.12.1367 |
[5] |
Harish Garg, Kamal Kumar. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. Journal of Industrial and Management Optimization, 2020, 16 (1) : 445-467. doi: 10.3934/jimo.2018162 |
[6] |
Jian Jin, Weijian Mi. An AIMMS-based decision-making model for optimizing the intelligent stowage of export containers in a single bay. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1101-1115. doi: 10.3934/dcdss.2019076 |
[7] |
Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134 |
[8] |
Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial and Management Optimization, 2020, 16 (2) : 633-651. doi: 10.3934/jimo.2018171 |
[9] |
Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623 |
[10] |
Ana F. Carazo, Ignacio Contreras, Trinidad Gómez, Fátima Pérez. A project portfolio selection problem in a group decision-making context. Journal of Industrial and Management Optimization, 2012, 8 (1) : 243-261. doi: 10.3934/jimo.2012.8.243 |
[11] |
Ankan Bhaumik, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management. Journal of Dynamics and Games, 2021, 8 (2) : 101-118. doi: 10.3934/jdg.2020031 |
[12] |
Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136 |
[13] |
Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1501-1519. doi: 10.3934/jimo.2018018 |
[14] |
Xue Yan, Heap-Yih Chong, Jing Zhou, Zhaohan Sheng, Feng Xu. Fairness preference based decision-making model for concession period in PPP projects. Journal of Industrial and Management Optimization, 2020, 16 (1) : 11-23. doi: 10.3934/jimo.2018137 |
[15] |
Sunil Kumar, Saikat Ranjan Maity, Lokeswar Patnaik. A novel BWM integrated MABAC decision-making approach to optimize the wear parameter of CrN/TiAlSiN coating. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022061 |
[16] |
Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 |
[17] |
Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747 |
[18] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[19] |
Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087 |
[20] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]