This paper investigates the mean-field stochastic linear quadratic optimal control problem of Markov regime switching system (M-MF-SLQ, for short). The representation of the cost functional for the M-MF-SLQ is derived using the technique of operators. It is shown that the convexity of the cost functional is necessary for the finiteness of the M-MF-SLQ problem, whereas uniform convexity of the cost functional is sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex cost functionals, a characterization of the finiteness of the problem is derived and a minimizing sequence, whose convergence is equivalent to the open-loop solvability of the problem, is constructed. We demonstrate with a few examples that our results can be employed for tackling some financial problems such as mean-variance portfolio selection problem.
Citation: |
[1] |
D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8.![]() ![]() ![]() |
[2] |
J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444.
doi: 10.1137/0314028.![]() ![]() ![]() |
[3] |
R. Buckdahn, B. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.
doi: 10.1007/s00245-011-9136-y.![]() ![]() ![]() |
[4] |
R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.
doi: 10.1214/08-AOP442.![]() ![]() ![]() |
[5] |
X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844.
doi: 10.1109/TAC.2014.2311875.![]() ![]() ![]() |
[6] |
C. Donnelly, Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.
doi: 10.1007/s00245-010-9130-9.![]() ![]() ![]() |
[7] |
C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461.
doi: 10.1137/100809271.![]() ![]() ![]() |
[8] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995.
![]() ![]() |
[9] |
R. Elliott, X. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.
doi: 10.1016/j.automatica.2013.08.017.![]() ![]() ![]() |
[10] |
J. Huang, X. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.
doi: 10.3934/mcrf.2015.5.97.![]() ![]() ![]() |
[11] |
M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.
![]() ![]() |
[12] |
H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122.
doi: 10.1109/TAC.1962.1105490.![]() ![]() |
[13] |
X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.
doi: 10.4310/CIS.2002.v2.n3.a4.![]() ![]() ![]() |
[14] |
X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp.
doi: 10.1186/s41546-016-0002-3.![]() ![]() ![]() |
[15] |
X. Li, X. Y. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.
doi: 10.1023/A:1024887007165.![]() ![]() ![]() |
[16] |
X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.
doi: 10.1214/105051606000000349.![]() ![]() ![]() |
[17] |
Y. Liu, G. Yin and X. Y. Zhou, Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.
doi: 10.1016/j.automatica.2005.01.002.![]() ![]() ![]() |
[18] |
R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.
doi: 10.1017/S0305004100030401.![]() ![]() ![]() |
[19] |
J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.
doi: 10.1137/140953642.![]() ![]() ![]() |
[20] |
J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308.
doi: 10.1137/15M103532X.![]() ![]() ![]() |
[21] |
J. Sun, Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.
doi: 10.1051/cocv/2016023.![]() ![]() ![]() |
[22] |
R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.
doi: 10.1016/j.sysconle.2012.06.006.![]() ![]() ![]() |
[23] |
W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697.
doi: 10.1137/0306044.![]() ![]() ![]() |
[24] |
Z. Wu and X.-R. Wang, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.
![]() ![]() |
[25] |
G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4346-9.![]() ![]() ![]() |
[26] |
K.-F. C. Yiu, J. Liu, T. K. Siu and W.-K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.
doi: 10.1016/j.automatica.2010.02.027.![]() ![]() ![]() |
[27] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999.
doi: 10.1007/978-1-4612-1466-3.![]() ![]() ![]() |
[28] |
J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.
doi: 10.1137/120892477.![]() ![]() ![]() |
[29] |
Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359.
doi: 10.1051/cocv/2016055.![]() ![]() ![]() |
[30] |
X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305.
doi: 10.1093/imaman/dpr018.![]() ![]() ![]() |
[31] |
X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018.
![]() |
[32] |
X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592.
doi: 10.1137/17M112395X.![]() ![]() ![]() |
[33] |
X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.
doi: 10.1137/S0363012902405583.![]() ![]() ![]() |