• Previous Article
    A new gradient computational formula for optimal control problems with time-delay
  • JIMO Home
  • This Issue
  • Next Article
    Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system
July  2022, 18(4): 2435-2468. doi: 10.3934/jimo.2021075

Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications

1. 

School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China

2. 

College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, China

* Corresponding author: Zhen Chen

Received  October 2020 Revised  January 2021 Published  July 2022 Early access  April 2021

Firstly, a weakness of Theorem 3.2 in [Journal of Industrial and Management Optimization, 17(2) (2021) 687-693] is pointed out. Secondly, a new Geršgorin-type $ Z $-eigenvalue inclusion interval for tensors is given. Subsequently, another Geršgorin-type $ Z $-eigenvalue inclusion interval with parameters for even order tensors is presented. Thirdly, by selecting appropriate parameters some optimal intervals are provided and proved to be tighter than some existing results. Finally, as an application, some sufficient conditions for the positive definiteness of homogeneous polynomial forms as well as the asymptotically stability of time-invariant polynomial systems are obtained. As another application, bounds of $ Z $-spectral radius of weakly symmetric nonnegative tensors are presented, which are used to estimate the convergence rate of the greedy rank-one update algorithm and derive bounds of the geometric measure of entanglement of symmetric pure state with nonnegative amplitudes.

Citation: Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2435-2468. doi: 10.3934/jimo.2021075
References:
[1]

A. AmmarF. Chinesta and A. Falcó, On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17 (2010), 473-486.  doi: 10.1007/s11831-010-9048-z.

[2]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, Med. Image Comput. Comput. Assist. Interv., 5241 (2008), 1–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18979725. doi: 10.1007/978-3-540-85988-8_1.

[3]

N. Bose and P. Kamt, Algorithm for stability test of multidimensional filters, IEEE Trans. Acoust. Speech Signal Process, 22 (1974), 307-314.  doi: 10.1109/TASSP.1974.1162592.

[4]

N. K. Bose and R. W. Newcomb, Tellegon's theorem and multivariate realizability theory, Int. J. Electron, 36 (1974), 417-425.  doi: 10.1080/00207217408900421.

[5]

K. C. ChangK. J. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.

[6]

C. DengH. Li and C. Bu, Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.  doi: 10.1016/j.laa.2018.06.032.

[7]

R. A. Devore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math., 5 (1996), 173-187.  doi: 10.1007/BF02124742.

[8]

P. V. D. Driessche, Reproduction numbers of infectious disease models, Infectious Disease Model., 2 (2017), 288-303.  doi: 10.1016/j.idm.2017.06.002.

[9]

A. Falco and A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach, J. Math. Anal. Appl., 376 (2011), 469-480.  doi: 10.1016/j.jmaa.2010.12.003.

[10]

J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301. 

[11]

J. He, Y.-M. Liu, H. Ke, J.-K. Tian and X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, Springerplus, 5 (2016), 1727. doi: 10.1186/s40064-016-3338-3.

[12]

J. He and T.-Z. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.

[13]

J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications, The McGraw-Hill Series in Advanced Chemistry McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956.

[14]

E. I. JuryN. K. Bose and B. D. Anderson, Output feedback stabilization and related problems-solutions via decision methods, IEEE Trans. Automat. Control, AC20 (1975), 53-66.  doi: 10.1109/tac.1975.1100846.

[15]

E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.

[16]

T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.  doi: 10.1137/100801482.

[17]

J. C. Kuang, Applied Inequalities (4th ed.), Shandong Science and Technology Press, Jinan, 2010.

[18]

L. D. LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-($R_1, R_2, \ldots, R_N$) approximation of higer-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.

[19]

C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors, Linear Multilinear Algebra, 64 (2016), 587-601.  doi: 10.1080/03081087.2015.1049582.

[20]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.

[21]

C. LiZ. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra Appl., 481 (2015), 36-53.  doi: 10.1016/j.laa.2015.04.023.

[22]

C. LiJ. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear Multiliear Algebra, 64 (2016), 727-736.  doi: 10.1080/03081087.2015.1119779.

[23]

C. LiA. Jiao and Y. Li, An $S$-type eigenvalue location set for tensors, Linear Algebra Appl., 493 (2016), 469-483.  doi: 10.1016/j.laa.2015.12.018.

[24]

C. LiY. Liu and Y. Li, Note on $Z$-eigenvalue inclusion theorems for tensors, J. Ind. Manag. Optim., 17 (2021), 687-693.  doi: 10.3934/jimo.2019129.

[25]

W. LiD. Liu and S.-W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.  doi: 10.1016/j.laa.2015.05.033.

[26]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.

[27]

Q. Liu and Y. Li, Bounds for the $Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181-194.  doi: 10.1515/math-2016-0017.

[28]

Q. NiL. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.

[29]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.

[30]

L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.  doi: 10.1016/j.jsc.2006.02.011.

[31]

L. QiG. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sciences, 3 (2010), 416-433.  doi: 10.1137/090755138.

[32]

L. Qi, The best rank-one approximation ratio of a tensor space, SIAM J. Matrix Anal. Appl., 32 (2011), 430-442.  doi: 10.1137/100795802.

[33]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017. doi: 10.1137/1.9781611974751.ch1.

[34]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.

[35]

C. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algor., 80 (2019), 781-794.  doi: 10.1007/s11075-018-0506-2.

[36]

C. Sang and J. Zhao, $E$-eigenvalue inclusion theorems for tensors, Filomat, 33 (2019), 3883-3891.  doi: 10.2298/FIL1912883S.

[37]

C. Sang and Z. Chen, $E$-eigenvalue localization sets for tensors, J. Ind. Manag. Optim., 16 (2020), 2045-2063.  doi: 10.3934/jimo.2019042.

[38]

C. Sang and Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020), 323-339.  doi: 10.1007/s10440-019-00300-1.

[39]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.

[40]

L. SunG. Wang and L. Liu, Further Study on $Z$-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.  doi: 10.1007/s40840-020-00939-2.

[41]

G. WangG. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst., Ser. B., 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.

[42]

Y. Wang and L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numer. Linear Algebra Appl., 14 (2007), 503-519.  doi: 10.1002/nla.537.

[43]

Y. Wang and G. Wang, Two $S$-type $Z$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 152, 12 pp. doi: 10.1186/s13660-017-1428-6.

[44]

L. Xiong and J. Liu, $Z$-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states, Comput. Appl. Math., 39 (2020), Paper No. 135, 11 pp. doi: 10.1007/s40314-020-01166-y.

[45]

T. Zhang and G. H. Golub, Rank-one approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.  doi: 10.1137/S0895479899352045.

[46]

J. Zhao, A new $Z$-eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 85, 9 pp. doi: 10.1186/s13660-017-1363-6.

[47]

J. Zhao and C. Sang, Two new eigenvalue localization sets for tensors and theirs applications, Open Math., 15 (2017), 1267-1276.  doi: 10.1515/math-2017-0106.

[48]

J. Zhao, $E$-eigenvalue localization sets for fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1685-1707.  doi: 10.1007/s40840-019-00768-y.

show all references

References:
[1]

A. AmmarF. Chinesta and A. Falcó, On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17 (2010), 473-486.  doi: 10.1007/s11831-010-9048-z.

[2]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, Med. Image Comput. Comput. Assist. Interv., 5241 (2008), 1–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18979725. doi: 10.1007/978-3-540-85988-8_1.

[3]

N. Bose and P. Kamt, Algorithm for stability test of multidimensional filters, IEEE Trans. Acoust. Speech Signal Process, 22 (1974), 307-314.  doi: 10.1109/TASSP.1974.1162592.

[4]

N. K. Bose and R. W. Newcomb, Tellegon's theorem and multivariate realizability theory, Int. J. Electron, 36 (1974), 417-425.  doi: 10.1080/00207217408900421.

[5]

K. C. ChangK. J. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.

[6]

C. DengH. Li and C. Bu, Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.  doi: 10.1016/j.laa.2018.06.032.

[7]

R. A. Devore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math., 5 (1996), 173-187.  doi: 10.1007/BF02124742.

[8]

P. V. D. Driessche, Reproduction numbers of infectious disease models, Infectious Disease Model., 2 (2017), 288-303.  doi: 10.1016/j.idm.2017.06.002.

[9]

A. Falco and A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach, J. Math. Anal. Appl., 376 (2011), 469-480.  doi: 10.1016/j.jmaa.2010.12.003.

[10]

J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301. 

[11]

J. He, Y.-M. Liu, H. Ke, J.-K. Tian and X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, Springerplus, 5 (2016), 1727. doi: 10.1186/s40064-016-3338-3.

[12]

J. He and T.-Z. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.

[13]

J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications, The McGraw-Hill Series in Advanced Chemistry McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956.

[14]

E. I. JuryN. K. Bose and B. D. Anderson, Output feedback stabilization and related problems-solutions via decision methods, IEEE Trans. Automat. Control, AC20 (1975), 53-66.  doi: 10.1109/tac.1975.1100846.

[15]

E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.

[16]

T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.  doi: 10.1137/100801482.

[17]

J. C. Kuang, Applied Inequalities (4th ed.), Shandong Science and Technology Press, Jinan, 2010.

[18]

L. D. LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-($R_1, R_2, \ldots, R_N$) approximation of higer-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.

[19]

C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors, Linear Multilinear Algebra, 64 (2016), 587-601.  doi: 10.1080/03081087.2015.1049582.

[20]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.

[21]

C. LiZ. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra Appl., 481 (2015), 36-53.  doi: 10.1016/j.laa.2015.04.023.

[22]

C. LiJ. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear Multiliear Algebra, 64 (2016), 727-736.  doi: 10.1080/03081087.2015.1119779.

[23]

C. LiA. Jiao and Y. Li, An $S$-type eigenvalue location set for tensors, Linear Algebra Appl., 493 (2016), 469-483.  doi: 10.1016/j.laa.2015.12.018.

[24]

C. LiY. Liu and Y. Li, Note on $Z$-eigenvalue inclusion theorems for tensors, J. Ind. Manag. Optim., 17 (2021), 687-693.  doi: 10.3934/jimo.2019129.

[25]

W. LiD. Liu and S.-W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.  doi: 10.1016/j.laa.2015.05.033.

[26]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.

[27]

Q. Liu and Y. Li, Bounds for the $Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181-194.  doi: 10.1515/math-2016-0017.

[28]

Q. NiL. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.

[29]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.

[30]

L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.  doi: 10.1016/j.jsc.2006.02.011.

[31]

L. QiG. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sciences, 3 (2010), 416-433.  doi: 10.1137/090755138.

[32]

L. Qi, The best rank-one approximation ratio of a tensor space, SIAM J. Matrix Anal. Appl., 32 (2011), 430-442.  doi: 10.1137/100795802.

[33]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017. doi: 10.1137/1.9781611974751.ch1.

[34]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.

[35]

C. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algor., 80 (2019), 781-794.  doi: 10.1007/s11075-018-0506-2.

[36]

C. Sang and J. Zhao, $E$-eigenvalue inclusion theorems for tensors, Filomat, 33 (2019), 3883-3891.  doi: 10.2298/FIL1912883S.

[37]

C. Sang and Z. Chen, $E$-eigenvalue localization sets for tensors, J. Ind. Manag. Optim., 16 (2020), 2045-2063.  doi: 10.3934/jimo.2019042.

[38]

C. Sang and Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020), 323-339.  doi: 10.1007/s10440-019-00300-1.

[39]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.

[40]

L. SunG. Wang and L. Liu, Further Study on $Z$-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.  doi: 10.1007/s40840-020-00939-2.

[41]

G. WangG. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst., Ser. B., 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.

[42]

Y. Wang and L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numer. Linear Algebra Appl., 14 (2007), 503-519.  doi: 10.1002/nla.537.

[43]

Y. Wang and G. Wang, Two $S$-type $Z$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 152, 12 pp. doi: 10.1186/s13660-017-1428-6.

[44]

L. Xiong and J. Liu, $Z$-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states, Comput. Appl. Math., 39 (2020), Paper No. 135, 11 pp. doi: 10.1007/s40314-020-01166-y.

[45]

T. Zhang and G. H. Golub, Rank-one approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.  doi: 10.1137/S0895479899352045.

[46]

J. Zhao, A new $Z$-eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 85, 9 pp. doi: 10.1186/s13660-017-1363-6.

[47]

J. Zhao and C. Sang, Two new eigenvalue localization sets for tensors and theirs applications, Open Math., 15 (2017), 1267-1276.  doi: 10.1515/math-2017-0106.

[48]

J. Zhao, $E$-eigenvalue localization sets for fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1685-1707.  doi: 10.1007/s40840-019-00768-y.

Table 1.  Upper bounds of $ \varrho(\mathcal{A}) $
Method $ \varrho(\mathcal{A})\leq $
Theorem 5.5, i.e., Corollary 4.5 of [39] 26.0000
Theorem 3.3 of [25] 25.7771
Theorem 3.4 of [47], where $ S=\{1\},\bar{S}=\{2\} $ 25.7382
Theorem 4.5 of [41] 25.7382
Theorem 3.5 of [10] 25.6437
Theorem 6 of [11] 25.6437
Theorem 4 of [43], where $ S=\{1\},\bar{S}=\{2\} $ 25.6437
Theorem 7 of [35] 25.4807
Theorem 7 of [44] 25.4807
Theorem 2.9 of [27] 23.8617
Theorem 5 of [46] 22.5426
Theorem 3.1 of [36] 21.8172
Theorem 5.6 16.0000
Corollary 9 14.5000
Method $ \varrho(\mathcal{A})\leq $
Theorem 5.5, i.e., Corollary 4.5 of [39] 26.0000
Theorem 3.3 of [25] 25.7771
Theorem 3.4 of [47], where $ S=\{1\},\bar{S}=\{2\} $ 25.7382
Theorem 4.5 of [41] 25.7382
Theorem 3.5 of [10] 25.6437
Theorem 6 of [11] 25.6437
Theorem 4 of [43], where $ S=\{1\},\bar{S}=\{2\} $ 25.6437
Theorem 7 of [35] 25.4807
Theorem 7 of [44] 25.4807
Theorem 2.9 of [27] 23.8617
Theorem 5 of [46] 22.5426
Theorem 3.1 of [36] 21.8172
Theorem 5.6 16.0000
Corollary 9 14.5000
[1]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial and Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[2]

Yang Xu, Zheng-Hai Huang. Pareto eigenvalue inclusion intervals for tensors. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022035

[3]

Guimin Liu, Hongbin Lv. Bounds for spectral radius of nonnegative tensors using matrix-digragh-based approach. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021176

[4]

Kaiping Liu, Haitao Che, Haibin Chen, Meixia Li. Parameterized S-type M-eigenvalue inclusion intervals for fourth-order partially symmetric tensors and its applications. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022077

[5]

Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009

[6]

Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070

[7]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial and Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[8]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[9]

Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583

[10]

Xifu Liu, Shuheng Yin, Hanyu Li. C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3349-3356. doi: 10.3934/jimo.2020122

[11]

Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3685-3694. doi: 10.3934/jimo.2020139

[12]

Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011

[13]

Juan Meng, Yisheng Song. Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors. Journal of Industrial and Management Optimization, 2020, 16 (2) : 911-918. doi: 10.3934/jimo.2018184

[14]

Yuyan Yao, Gang Wang. Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors. Mathematical Foundations of Computing, 2022, 5 (1) : 33-44. doi: 10.3934/mfc.2021018

[15]

Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054

[16]

Yining Gu, Wei Wu. New bounds for eigenvalues of strictly diagonally dominant tensors. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 203-210. doi: 10.3934/naco.2018012

[17]

Yannan Chen, Jingya Chang. A trust region algorithm for computing extreme eigenvalues of tensors. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 475-485. doi: 10.3934/naco.2020046

[18]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[19]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[20]

Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (430)
  • HTML views (482)
  • Cited by (0)

Other articles
by authors

[Back to Top]