[1]
|
A. Ammar, F. Chinesta and A. Falcó, On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17 (2010), 473-486.
doi: 10.1007/s11831-010-9048-z.
|
[2]
|
L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, Med. Image Comput. Comput. Assist. Interv., 5241 (2008), 1–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18979725.
doi: 10.1007/978-3-540-85988-8_1.
|
[3]
|
N. Bose and P. Kamt, Algorithm for stability test of multidimensional filters, IEEE Trans. Acoust. Speech Signal Process, 22 (1974), 307-314.
doi: 10.1109/TASSP.1974.1162592.
|
[4]
|
N. K. Bose and R. W. Newcomb, Tellegon's theorem and multivariate realizability theory, Int. J. Electron, 36 (1974), 417-425.
doi: 10.1080/00207217408900421.
|
[5]
|
K. C. Chang, K. J. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013.
|
[6]
|
C. Deng, H. Li and C. Bu, Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.
doi: 10.1016/j.laa.2018.06.032.
|
[7]
|
R. A. Devore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math., 5 (1996), 173-187.
doi: 10.1007/BF02124742.
|
[8]
|
P. V. D. Driessche, Reproduction numbers of infectious disease models, Infectious Disease Model., 2 (2017), 288-303.
doi: 10.1016/j.idm.2017.06.002.
|
[9]
|
A. Falco and A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach, J. Math. Anal. Appl., 376 (2011), 469-480.
doi: 10.1016/j.jmaa.2010.12.003.
|
[10]
|
J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.
|
[11]
|
J. He, Y.-M. Liu, H. Ke, J.-K. Tian and X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, Springerplus, 5 (2016), 1727.
doi: 10.1186/s40064-016-3338-3.
|
[12]
|
J. He and T.-Z. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012.
|
[13]
|
J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications, The McGraw-Hill Series in Advanced Chemistry McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956.
|
[14]
|
E. I. Jury, N. K. Bose and B. D. Anderson, Output feedback stabilization and related problems-solutions via decision methods, IEEE Trans. Automat. Control, AC20 (1975), 53-66.
doi: 10.1109/tac.1975.1100846.
|
[15]
|
E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.
doi: 10.1137/S0895479801387413.
|
[16]
|
T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482.
|
[17]
|
J. C. Kuang, Applied Inequalities (4th ed.), Shandong Science and Technology Press, Jinan, 2010.
|
[18]
|
L. D. Lathauwer, B. D. Moor and J. Vandewalle, On the best rank-1 and rank-($R_1, R_2, \ldots, R_N$) approximation of higer-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.
doi: 10.1137/S0895479898346995.
|
[19]
|
C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors, Linear Multilinear Algebra, 64 (2016), 587-601.
doi: 10.1080/03081087.2015.1049582.
|
[20]
|
C. Li, Y. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858.
|
[21]
|
C. Li, Z. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra Appl., 481 (2015), 36-53.
doi: 10.1016/j.laa.2015.04.023.
|
[22]
|
C. Li, J. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear Multiliear Algebra, 64 (2016), 727-736.
doi: 10.1080/03081087.2015.1119779.
|
[23]
|
C. Li, A. Jiao and Y. Li, An $S$-type eigenvalue location set for tensors, Linear Algebra Appl., 493 (2016), 469-483.
doi: 10.1016/j.laa.2015.12.018.
|
[24]
|
C. Li, Y. Liu and Y. Li, Note on $Z$-eigenvalue inclusion theorems for tensors, J. Ind. Manag. Optim., 17 (2021), 687-693.
doi: 10.3934/jimo.2019129.
|
[25]
|
W. Li, D. Liu and S.-W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033.
|
[26]
|
L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.
|
[27]
|
Q. Liu and Y. Li, Bounds for the $Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181-194.
doi: 10.1515/math-2016-0017.
|
[28]
|
Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679.
|
[29]
|
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.
|
[30]
|
L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.
doi: 10.1016/j.jsc.2006.02.011.
|
[31]
|
L. Qi, G. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sciences, 3 (2010), 416-433.
doi: 10.1137/090755138.
|
[32]
|
L. Qi, The best rank-one approximation ratio of a tensor space, SIAM J. Matrix Anal. Appl., 32 (2011), 430-442.
doi: 10.1137/100795802.
|
[33]
|
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017.
doi: 10.1137/1.9781611974751.ch1.
|
[34]
|
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018.
doi: 10.1007/978-981-10-8058-6.
|
[35]
|
C. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algor., 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2.
|
[36]
|
C. Sang and J. Zhao, $E$-eigenvalue inclusion theorems for tensors, Filomat, 33 (2019), 3883-3891.
doi: 10.2298/FIL1912883S.
|
[37]
|
C. Sang and Z. Chen, $E$-eigenvalue localization sets for tensors, J. Ind. Manag. Optim., 16 (2020), 2045-2063.
doi: 10.3934/jimo.2019042.
|
[38]
|
C. Sang and Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020), 323-339.
doi: 10.1007/s10440-019-00300-1.
|
[39]
|
Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.
doi: 10.1137/130909135.
|
[40]
|
L. Sun, G. Wang and L. Liu, Further Study on $Z$-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.
doi: 10.1007/s40840-020-00939-2.
|
[41]
|
G. Wang, G. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst., Ser. B., 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009.
|
[42]
|
Y. Wang and L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numer. Linear Algebra Appl., 14 (2007), 503-519.
doi: 10.1002/nla.537.
|
[43]
|
Y. Wang and G. Wang, Two $S$-type $Z$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 152, 12 pp.
doi: 10.1186/s13660-017-1428-6.
|
[44]
|
L. Xiong and J. Liu, $Z$-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states, Comput. Appl. Math., 39 (2020), Paper No. 135, 11 pp.
doi: 10.1007/s40314-020-01166-y.
|
[45]
|
T. Zhang and G. H. Golub, Rank-one approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.
doi: 10.1137/S0895479899352045.
|
[46]
|
J. Zhao, A new $Z$-eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 85, 9 pp.
doi: 10.1186/s13660-017-1363-6.
|
[47]
|
J. Zhao and C. Sang, Two new eigenvalue localization sets for tensors and theirs applications, Open Math., 15 (2017), 1267-1276.
doi: 10.1515/math-2017-0106.
|
[48]
|
J. Zhao, $E$-eigenvalue localization sets for fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1685-1707.
doi: 10.1007/s40840-019-00768-y.
|