[1]
|
J. T. Betts, S. L. Campbell and K. C. Thompson, Optimal control software for constrained nonlinear systems with delays, in IEEE International Symposium on Computer-Aided Control System Design (CACSD), IEEE, 2011,444–449.
|
[2]
|
Q. Chai, R. Loxton, K. L. Teo and C. Yang, A class of optimal state-delay control problems, Nonlinear Analysis: Real World Applications, 14 (2013), 1536-1550.
doi: 10.1016/j.nonrwa.2012.10.017.
|
[3]
|
Q. Chai, R. Loxton, K. L. Teo and C. Yang, A unified parameter identification method for nonlinear time-delay systems, Journal of Industrial and Management Optimization, 9 (2013), 471-486.
doi: 10.3934/jimo.2013.9.471.
|
[4]
|
Q. Q. Chai, C. H. Yang, K. L. Teo and W. H. Gui, Optimal control of an industrial-scale evaporation process: Sodium aluminate solution, Control Engineering Practice, 20 (2012), 618-628.
doi: 10.1016/j.conengprac.2012.03.001.
|
[5]
|
L. Denis-Vidal, C. Jauberthie and G. Joly-Blanchard, Identifiability of a nonlinear delayed-differential aerospace model, IEEE Transactions on Automatic Control, 51 (2006), 154-158.
doi: 10.1109/TAC.2005.861700.
|
[6]
|
V. Deshmukh, H. Ma and E. A. Butcher, Optimal control of parametrically excited linear delay differential systems via chebyshev polynomials, Optimal Control Applications and Methods, 27 (2006), 123-136.
doi: 10.1002/oca.769.
|
[7]
|
C. J. Goh and K. L. Teo, Control parametrization: A unified approach to optimal control problems with general constraints, Automatica, 24 (1988), 3-18.
doi: 10.1016/0005-1098(88)90003-9.
|
[8]
|
L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control–state constraints, Optimal Control Applications and Methods, 30 (2009), 341-365.
doi: 10.1002/oca.843.
|
[9]
|
L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and Management Optimization, 10 (2014), 413-441.
doi: 10.3934/jimo.2014.10.413.
|
[10]
|
K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems, Journal of Optimization Theory and Applications, 82 (1994), 295-313.
doi: 10.1007/BF02191855.
|
[11]
|
C. Y. Kaya and J. L. Noakes, Computational method for time-optimal switching control, Journal of Optimization Theory and Applications, 117 (2003), 69-92.
doi: 10.1023/A:1023600422807.
|
[12]
|
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-261.
|
[13]
|
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.
doi: 10.1016/S0005-1098(99)00050-3.
|
[14]
|
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.
doi: 10.1007/s10957-011-9904-5.
|
[15]
|
L. Li, C. Yu, N. Zhang, Y. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1825-1843.
doi: 10.3934/dcdss.2020108.
|
[16]
|
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275.
|
[17]
|
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems B, 18 (2011), 59-76.
|
[18]
|
R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.
doi: 10.1016/j.automatica.2008.04.011.
|
[19]
|
M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems: Analysis, Optimization and Applications, North-Holland Systems and Control Series, 9. North-Holland Publishing Co., Amsterdam, 1987.
|
[20]
|
H. R. Marzban and S. M. Hoseini, An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays, Optimal Control Applications and Methods, 37 (2016), 682-707.
doi: 10.1002/oca.2187.
|
[21]
|
P. Mu, L. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.
doi: 10.1007/s10957-017-1163-7.
|
[22]
|
A. Nasir, E. M. Atkins and I. Kolmanovsky, Robust science-optimal spacecraft control for circular orbit missions, IEEE Transactions on Systems Man and Cybernetics Systems, 50 (2020), 923-934.
doi: 10.1109/TSMC.2017.2767077.
|
[23]
|
J. Nocedal and S. J. Wright, Numerical Optimization, 2$^nd$ edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.
|
[24]
|
D. Stefanatos, Optimal shortcuts to adiabaticity for a quantum piston, Automatica, 49 (2013), 3079-3083.
doi: 10.1016/j.automatica.2013.07.020.
|
[25]
|
R. F. Stengel, R. Ghigliazza, N. Kulkarni and O. Laplace, Optimal control of innate immune response, Optimal Control Applications and Methods, 23 (2002), 91-104.
doi: 10.1002/oca.704.
|
[26]
|
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, 1991.
|
[27]
|
T. L. Vincent, W. J. Grantham and W. Stadler, Optimality in Parametric Systems, American Society of Mechanical Engineers Digital Collection, 1983.
|
[28]
|
L. Wang, J. Yuan, C. Wu and X. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.
doi: 10.1007/s11590-017-1220-z.
|
[29]
|
K. H. Wong, L. S. Jennings and F. Benyah, The control parametrization enhancing transform for constrained time–delayed optimal control problems, ANZIAM Journal, 43 (2001), 154-185.
|
[30]
|
D. Wu, Y. Bai and F. Xie, Time-scaling transformation for optimal control problem with time-varying delay, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1683-1695.
doi: 10.3934/dcdss.2020098.
|
[31]
|
D. Wu, Y. Bai and C. Yu, A new computational approach for optimal control problems with multiple time-delay, Automatica, 101 (2019), 388-395.
doi: 10.1016/j.automatica.2018.12.036.
|
[32]
|
X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.
doi: 10.1109/TAC.2003.821417.
|
[33]
|
C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.
doi: 10.1007/s10898-012-9858-7.
|
[34]
|
C. Yu, Q. Lin, R. Loxton, K. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Applications, 169 (2016), 876-901.
doi: 10.1007/s10957-015-0783-z.
|
[35]
|
N. Zhang, C. -J. Yu and F. -S. Xie, The time-scaling transformation technique for optimal control problems with time-varying time-delay switched systems, Journal of the Operations Research Society of China, 8 (2020), 581-600.
doi: 10.1007/s40305-020-00299-5.
|