[1]
|
K. M. Anstreicher, Interior-point algorithms for a generalization of linear programming and weighted centring, Optim. Methods Softw., 27 (2012), 605-612.
doi: 10.1080/10556788.2011.644791.
|
[2]
|
Y. Bai, P. Ma and J. Zhang, A polynomial-time interior-point method for circular cone programming based on kernel functions, J. Ind. Manag. Optim., 12 (2016), 739-756.
doi: 10.3934/jimo.2016.12.739.
|
[3]
|
J. -S. Chen, SOC Functions and their Applications, Springer, Singapore, 2019.
doi: 10.1007/978-981-13-4077-2.
|
[4]
|
X. Chi, M. S. Gowda and J. Tao, The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra, J. Global Optim., 73 (2019), 153-169.
doi: 10.1007/s10898-018-0689-z.
|
[5]
|
R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.
doi: 10.1137/1.9780898719000.
|
[6]
|
S.-C. Fang and W. X. Xing, Linear Conic Programming: Theory and Applications, Science Press, Beijing, 2013.
|
[7]
|
M. Fukushima, Z.-Q. Luo and P. Tseng, Smoothing functions for second-order-cone complementarity problems, SIAM J. Optim., 12 (2002), 436-460.
doi: 10.1137/S1052623400380365.
|
[8]
|
G. Gu, H. Mansouri, M. Zangiabadi, Y. Q. Bai and C. Roos, Improved full-Newton step $O(nL)$ infeasible interior-point method for linear optimization, J. Optim. Theory Appl., 145 (2010), 271-288.
doi: 10.1007/s10957-009-9634-0.
|
[9]
|
N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), 373-395.
doi: 10.1007/BF02579150.
|
[10]
|
M. Kojima, S. Mizuno and T. Noma, Limiting behavior of trajectories generated by a continuation method for monotone complementarity problems, Math. Oper. Res., 15 (1990), 662-675.
doi: 10.1287/moor.15.4.662.
|
[11]
|
L. Kong, N. Xiu and J. Han, The solution set structure of monotone linear complementarity problems over second-order cone, Oper. Res. Lett., 36 (2008), 71-76.
doi: 10.1016/j.orl.2007.03.009.
|
[12]
|
H. Liu, X. Yang and C. Liu, A new wide neighborhood primal-dual infeasible-interior-point method for symmetric cone programming, J. Optim. Theory Appl., 158 (2013), 796-815.
doi: 10.1007/s10957-013-0303-y.
|
[13]
|
N. Lu and Z.-H. Huang, A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems, J. Optim. Theory Appl., 161 (2014), 446-464.
doi: 10.1007/s10957-013-0436-z.
|
[14]
|
F. A. Potra, Weighted complementarity problems-a new paradigm for computing equilibria, SIAM J. Optim., 22 (2012), 1634-1654.
doi: 10.1137/110837310.
|
[15]
|
F. A. Potra, Sufficient weighted complementarity problems, Comput. Optim. Appl., 64 (2016), 467-488.
doi: 10.1007/s10589-015-9811-z.
|
[16]
|
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Math. Program., 87 (2000), 1-35.
doi: 10.1007/s101079900127.
|
[17]
|
C. Roos, A full-Newton step $O(n)$ infeasible interior-point algorithm for linear optimization, SIAM J. Optim., 16 (2006), 1110-1136.
doi: 10.1137/050623917.
|
[18]
|
C. Roos, T. Terlaky and J. -Ph. Vial, Theory and Algorithms for Linear Optimization. An Interior-Point Approach, John Wiley & Sons, Chichester, 1997.
|
[19]
|
J. Tang, A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs, Comput. Appl. Math., 37 (2018), 3927-3936.
doi: 10.1007/s40314-017-0554-6.
|
[20]
|
G. Q. Wang, C. J. Yu and K. L. Teo, A full-Newton step feasible interior-point algorithm for $P_{*}(\kappa)$-linear complementarity problems, J. Global Optim., 59 (2014), 81-99.
doi: 10.1007/s10898-013-0090-x.
|
[21]
|
J. Wu, L. Zhang and Y. Zhang, A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations, J. Glob. Optim., 55 (2013), 359-385.
doi: 10.1007/s10898-012-9880-9.
|
[22]
|
Y. Xu, L. Zhang and J. Zhang, A full-modified-Newton step infeasible interior-point algorithm for linear optimization, J. Ind. Manag. Optim., 12 (2016), 103-116.
doi: 10.3934/jimo.2016.12.103.
|
[23]
|
Y. Ye, Inteior Point Algorithms, Theory and Analysis, John Wiley & Sons, New York, 1997.
doi: 10.1002/9781118032701.
|
[24]
|
Y. Ye, A path to the Arrow-Debreu competitive market equilibrium, Math. Program., 111 (2008), 315-348.
doi: 10.1007/s10107-006-0065-5.
|
[25]
|
J. Zhang, A smoothing Newton algorithm for weighted linear complementarity problem, Optim. Lett., 10 (2016), 499-509.
doi: 10.1007/s11590-015-0877-4.
|
[26]
|
L. Zhang and Y. Xu, A full-Newton step interior-point algorithm based on modified Newton direction, Oper. Res. Lett., 39 (2011), 318-322.
doi: 10.1016/j.orl.2011.06.006.
|