• Previous Article
    The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain
  • JIMO Home
  • This Issue
  • Next Article
    Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem
July  2022, 18(4): 2721-2748. doi: 10.3934/jimo.2021089

Pricing and coordination of competitive recycling and remanufacturing supply chain considering the quality of recycled products

1. 

Key Laboratory of Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

2. 

Hubei Provincial Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

* Corresponding author: Xuhui Xia

Received  November 2020 Revised  February 2021 Published  July 2022 Early access  April 2021

Fund Project: This research was supported by the National Natural Science Foundation of China (No. 51805385) and Natural Science Foundation of Hubei Province (No. 2018CFB265)

Considering the quality of recycled products, we develop a game model of a multi-level competitive recycling and remanufacturing supply chain with two manufacturers and multiple recyclers. Being focus on two mainstream game models, namely the manufacturer-recycler cooperation game model and the manufacturer-led Stackelberg game model, we explore the connection between optimal pricing decisions and performance levels of the supply chain members. Although researches indicate that the quality of recycled products will not affect the pricing decisions in the forward supply chain, it is positively related to the recycling price, the repurchase price, and the overall profit in the reverse supply chain, and the intensity of competition among manufacturers or recycled products will affect the pricing decisions and the performance levels of the two models. In the manufacturer-led Stackelberg game model, the supply chain does not reach the Pareto optimum, which uses the recycling cost sharing contract to achieve the coordination. Afterwards, the profits of the two manufacturers and multiple recyclers in the supply chain are increased, and the overall profit of the supply chain system is higher than that of the manufacturer-led Stackelberg game model. Finally, numerical analysis is conducted to verify the proposed coordination mechanism and its effectiveness.

Citation: Yanhua Feng, Xuhui Xia, Lei Wang, Zelin Zhang. Pricing and coordination of competitive recycling and remanufacturing supply chain considering the quality of recycled products. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2721-2748. doi: 10.3934/jimo.2021089
References:
[1]

M. Abbas, K. Devika, E. H. Rebort et al., Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, J. Clean. Prod., 249 (2020), 119383.

[2]

M. Arshad, Q. S. Khalid, J. Lloret et al., An efficient approach for coordination of dual-channel closed-loop supply chain management, Sustainability, 10 (2018), 3433. doi: 10.3390/su10103433.

[3]

R. BhattacharyaA. Kaur and R. K. Amit, Price optimization of multi-stage remanufacturing in a closed loop supply chain, J. Clean. Prod., 186 (2018), 943-962.  doi: 10.1016/j.jclepro.2018.02.222.

[4]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturing stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583. 

[5]

Q. W. DengS. M. Guo and Q. H. Ren et al., Research of policy on competitive closed-loop supply chain based on quality uncertainty, Ind. Techno. Econ., 36 (2017), 137-146. 

[6]

B. C. GiriA. Chakraborty and T. Maiti, Pricing and return product collection decisions in closed-loop supply chain with dual-channel in both forward and reverse logistics, J. Manuf. Syst., 42 (2017), 104-123.  doi: 10.1016/j.jmsy.2016.11.007.

[7]

B. C. GiriC. Mondal and T. Maiti, Optimal product quality and pricing strategy for a two-period closed-loop supply chain with retailer variable markup, RAIRO-Oper. Res., 53 (2019), 609-626.  doi: 10.1051/ro/2017061.

[8]

A. Goli, E. B. Tirkolaee and G. W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Oper. Manag. Recycl. Reuse, (2020), 99-124.

[9]

Q. Gu and T. Gao, Management of two competitive closed-loop supply chains, Int. J. Sustain. Eng., 5 (2012), 325-337.  doi: 10.1080/19397038.2012.718808.

[10]

V. D. R. Guide and J. Li, The potential for cannibalization of new products sales by remanufactured products, Dec. Sci., 41 (2010), 547-572.  doi: 10.1111/j.1540-5915.2010.00280.x.

[11]

X. H. Han and S. J. Xue, Reverse channel decisions for competition closed-loop supply chain based on evolutionary game, Comput. Interg. Manuf. Syst., 16 (2010), 1487-1493. 

[12]

C. HeX. F. Song and C. H. Feng, Research on double contracts selection with recyclers' competition of closed-loop supply chain based on multi-agent model, Chinese J. Manag. Sci., 23 (2015), 75-83. 

[13]

Q. HeN. Wang and Z. Yang et al., Competitive collection under channel inconvenience in closed-loop supply chain, European J. Oper. Res., 275 (2019), 155-166.  doi: 10.1016/j.ejor.2018.11.034.

[14]

J. HeydariK. Govindan and R. Sadeghi, Reverse supply chain coordination under stochastic remanufacturing capacity, Int. J. Prod. Econo., 202 (2018), 1-11.  doi: 10.1016/j.ijpe.2018.04.024.

[15]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, Eur. J. Oper. Res., 205 (2010), 113-126. 

[16]

S. K. Jena and and S. P. Sarmah, Price competition and cooperation in a duopoly closed-loop supply chain, Int. J. Prod. Econ., 156 (2014), 346-360. 

[17]

J. JiZ. Zhang and L. Yang, Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers' preference, J. Clean. Prod., 141 (2017), 852-867.  doi: 10.1016/j.jclepro.2016.09.135.

[18]

Y. Jing and C. Z. Li, Pricing strategy of recycling and remanufacturing under the corporate social responsibility, Comput. Interg. Manuf. Syst., 25 (2019), 256-266. 

[19]

D. R. Liu, Research on products pricing non-cooperative game methods of supply chain considering service level, J. Zhengzhou Univ. Aero., 38 (2020), 73-84. 

[20]

W. J. LiuN. N. Shen and J. Zhang et al., Optimal pricing for remanufacturing closed-loop supply chain under different channel power structures and product dua differentiation, Ind. Eng. J., 21 (2018), 54-63. 

[21]

Z. MaA. Prasad and S. P. Sethi, Strategic remanufacturing under competition, Rev. Mark. Sci., 16 (2018), 85-107.  doi: 10.1515/roms-2019-0019.

[22]

Y. Z. Mehrjerdi and R. Lotfi, Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework, Int. J. Sup. Oper. Manag., 6 (2019), 360-388. 

[23]

S. Mitra, Models to explore remanufacturing as a competitive strategy under duopoly, Omega, 59 (2016), 215-227.  doi: 10.1016/j.omega.2015.06.009.

[24]

J. J. Nie and L. Zhong, A research on the remanufacturing models with green customers, Ind. Eng. J., 21 (2018), 9-18. 

[25]

S. Panda and M. M. Nikunja, Coordinating a socially responsible closed -loop supply chain with product recycling, Int. J. Prod. Econ., 188 (2017), 11-21. 

[26]

S. Rahman and N. Subramanian, Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., 140 (2012), 239-248.  doi: 10.1016/j.ijpe.2011.07.019.

[27]

R. C. Savaskan and L. N. V. Wassenhove, Reverse channel design: The case of competing retailers, Manag. Sci., 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.

[28]

C. R. ShenZ. K. Xiong and Z. Q. Peng, Decision and coordination research for remanufacturing closed-loop supply chain under patent protection and government subsidies, Ind. Eng. Manag., 27 (2013), 132-137. 

[29]

C. Su, X. Liu and W. Du, Green supply chain decisions considering consumers' low-carbon awareness under different government subsidies, Sustainability, 12 (2020), 2281. doi: 10.3390/su12062281.

[30]

E. B. Tirkolaee, P. Abbasian and G. W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Sci. Tot. Env., 756 (2021), 143607.

[31]

N. Wan and D. Hong, The impacts of subsidy policies and transfer pricing policies on the closed-loop supply chain with dual collection channels, J. Clean. Prod., 224 (2019), 881-891.  doi: 10.1016/j.jclepro.2019.03.274.

[32]

W. B. WangQ. Chen and Q. L. Da, Decision and analysis of closed-loop supply chain with manufacturer-led and manufacturer-compete based on the reward-penalty mechanism, Chinese J. Manag. Sci., 21 (2013), 57-63. 

[33]

J. WangZ. Zhou and M. Yu, Pricing models in a sustainable supply chain with capacity constraint, J. Clean. Prod., 222 (2019), 57-76.  doi: 10.1016/j.jclepro.2019.01.319.

[34]

J. WeiK. Govindan and Y. Li et al., Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information, Comput. Oper. Res., 54 (2015), 257-265.  doi: 10.1016/j.cor.2013.11.021.

[35]

H. Y. Wu and X. H. Han, Production decisions in manufacturer competing closed-loop supply chains under remanufacturing costs disruptions scenarios, Comput. Interg. Manuf. Syst., 22 (2016), 1129-1138. 

[36]

L. Wu, L. Liu and Z. Wang, Competitive remanufacturing and pricing strategy with contrast effect and assimilation effect, J. Clean. Prod., 257 (2020), 120333. doi: 10.1016/j. jclepro. 2020.120333.

[37]

M. Z. Xu and F. Tang, Coordination mechanism of dual-channel closed-loop supply chain based on third-party collection, Comput. Interg. Manuf. Syst., 19 (2013), 2083-2089. 

[38]

A.-T. Yang and L.-D. Zhao, Supply chain network equilibrium with revenue sharing contract under demand disruptions, Int. J. Aut. Comput., 8 (2011), 177-184.  doi: 10.1007/s11633-011-0571-7.

[39]

F. M. Yao and C. X. Teng, Decision and coordination for competitive closed-loop supply chains with third-party collector dominated by a retailer, J. Syst. Eng., 34 (2019), 93-101. 

[40]

A. Yenipazarli, Managing new and remanufactured products to mitigate environmental damage under emissions regulation, European J. Oper. Res., 249 (2016), 117-130.  doi: 10.1016/j.ejor.2015.08.020.

[41]

Y. Y. Yi and J. M. Liang, Coordination of remanufacturing closed-loop supply chain under premium and penalty mechanism, Comput. Interg. Manuf. Syst., 19 (2013), 841-849. 

[42]

K. F. Yuan, G. Q. Wu, H. Dong et al., Differential pricing and emission reduction in remanufacturing supply chains with dual-sale channels under CCT-mechanism, Sustainability, 12 (2020), 8150.

[43]

Y. J. Zhang, C. X. Guo and L. C. Wang, Supply chain strategy analysis of low carbon subsidy policies based on carbon trading, Sustainability, 12 (2020), 3532.

[44]

L. ZhangJ. Wang and J. You, Consumer environmental awareness and channel coordination with two substitutable products, European J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.

[45]

J. ZhaoJ. Wei and M. Li, Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain, J. Clean. Prod., 167 (2017), 530-544.  doi: 10.1016/j.jclepro.2017.07.254.

show all references

References:
[1]

M. Abbas, K. Devika, E. H. Rebort et al., Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, J. Clean. Prod., 249 (2020), 119383.

[2]

M. Arshad, Q. S. Khalid, J. Lloret et al., An efficient approach for coordination of dual-channel closed-loop supply chain management, Sustainability, 10 (2018), 3433. doi: 10.3390/su10103433.

[3]

R. BhattacharyaA. Kaur and R. K. Amit, Price optimization of multi-stage remanufacturing in a closed loop supply chain, J. Clean. Prod., 186 (2018), 943-962.  doi: 10.1016/j.jclepro.2018.02.222.

[4]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturing stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583. 

[5]

Q. W. DengS. M. Guo and Q. H. Ren et al., Research of policy on competitive closed-loop supply chain based on quality uncertainty, Ind. Techno. Econ., 36 (2017), 137-146. 

[6]

B. C. GiriA. Chakraborty and T. Maiti, Pricing and return product collection decisions in closed-loop supply chain with dual-channel in both forward and reverse logistics, J. Manuf. Syst., 42 (2017), 104-123.  doi: 10.1016/j.jmsy.2016.11.007.

[7]

B. C. GiriC. Mondal and T. Maiti, Optimal product quality and pricing strategy for a two-period closed-loop supply chain with retailer variable markup, RAIRO-Oper. Res., 53 (2019), 609-626.  doi: 10.1051/ro/2017061.

[8]

A. Goli, E. B. Tirkolaee and G. W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Oper. Manag. Recycl. Reuse, (2020), 99-124.

[9]

Q. Gu and T. Gao, Management of two competitive closed-loop supply chains, Int. J. Sustain. Eng., 5 (2012), 325-337.  doi: 10.1080/19397038.2012.718808.

[10]

V. D. R. Guide and J. Li, The potential for cannibalization of new products sales by remanufactured products, Dec. Sci., 41 (2010), 547-572.  doi: 10.1111/j.1540-5915.2010.00280.x.

[11]

X. H. Han and S. J. Xue, Reverse channel decisions for competition closed-loop supply chain based on evolutionary game, Comput. Interg. Manuf. Syst., 16 (2010), 1487-1493. 

[12]

C. HeX. F. Song and C. H. Feng, Research on double contracts selection with recyclers' competition of closed-loop supply chain based on multi-agent model, Chinese J. Manag. Sci., 23 (2015), 75-83. 

[13]

Q. HeN. Wang and Z. Yang et al., Competitive collection under channel inconvenience in closed-loop supply chain, European J. Oper. Res., 275 (2019), 155-166.  doi: 10.1016/j.ejor.2018.11.034.

[14]

J. HeydariK. Govindan and R. Sadeghi, Reverse supply chain coordination under stochastic remanufacturing capacity, Int. J. Prod. Econo., 202 (2018), 1-11.  doi: 10.1016/j.ijpe.2018.04.024.

[15]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, Eur. J. Oper. Res., 205 (2010), 113-126. 

[16]

S. K. Jena and and S. P. Sarmah, Price competition and cooperation in a duopoly closed-loop supply chain, Int. J. Prod. Econ., 156 (2014), 346-360. 

[17]

J. JiZ. Zhang and L. Yang, Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers' preference, J. Clean. Prod., 141 (2017), 852-867.  doi: 10.1016/j.jclepro.2016.09.135.

[18]

Y. Jing and C. Z. Li, Pricing strategy of recycling and remanufacturing under the corporate social responsibility, Comput. Interg. Manuf. Syst., 25 (2019), 256-266. 

[19]

D. R. Liu, Research on products pricing non-cooperative game methods of supply chain considering service level, J. Zhengzhou Univ. Aero., 38 (2020), 73-84. 

[20]

W. J. LiuN. N. Shen and J. Zhang et al., Optimal pricing for remanufacturing closed-loop supply chain under different channel power structures and product dua differentiation, Ind. Eng. J., 21 (2018), 54-63. 

[21]

Z. MaA. Prasad and S. P. Sethi, Strategic remanufacturing under competition, Rev. Mark. Sci., 16 (2018), 85-107.  doi: 10.1515/roms-2019-0019.

[22]

Y. Z. Mehrjerdi and R. Lotfi, Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework, Int. J. Sup. Oper. Manag., 6 (2019), 360-388. 

[23]

S. Mitra, Models to explore remanufacturing as a competitive strategy under duopoly, Omega, 59 (2016), 215-227.  doi: 10.1016/j.omega.2015.06.009.

[24]

J. J. Nie and L. Zhong, A research on the remanufacturing models with green customers, Ind. Eng. J., 21 (2018), 9-18. 

[25]

S. Panda and M. M. Nikunja, Coordinating a socially responsible closed -loop supply chain with product recycling, Int. J. Prod. Econ., 188 (2017), 11-21. 

[26]

S. Rahman and N. Subramanian, Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., 140 (2012), 239-248.  doi: 10.1016/j.ijpe.2011.07.019.

[27]

R. C. Savaskan and L. N. V. Wassenhove, Reverse channel design: The case of competing retailers, Manag. Sci., 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.

[28]

C. R. ShenZ. K. Xiong and Z. Q. Peng, Decision and coordination research for remanufacturing closed-loop supply chain under patent protection and government subsidies, Ind. Eng. Manag., 27 (2013), 132-137. 

[29]

C. Su, X. Liu and W. Du, Green supply chain decisions considering consumers' low-carbon awareness under different government subsidies, Sustainability, 12 (2020), 2281. doi: 10.3390/su12062281.

[30]

E. B. Tirkolaee, P. Abbasian and G. W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Sci. Tot. Env., 756 (2021), 143607.

[31]

N. Wan and D. Hong, The impacts of subsidy policies and transfer pricing policies on the closed-loop supply chain with dual collection channels, J. Clean. Prod., 224 (2019), 881-891.  doi: 10.1016/j.jclepro.2019.03.274.

[32]

W. B. WangQ. Chen and Q. L. Da, Decision and analysis of closed-loop supply chain with manufacturer-led and manufacturer-compete based on the reward-penalty mechanism, Chinese J. Manag. Sci., 21 (2013), 57-63. 

[33]

J. WangZ. Zhou and M. Yu, Pricing models in a sustainable supply chain with capacity constraint, J. Clean. Prod., 222 (2019), 57-76.  doi: 10.1016/j.jclepro.2019.01.319.

[34]

J. WeiK. Govindan and Y. Li et al., Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information, Comput. Oper. Res., 54 (2015), 257-265.  doi: 10.1016/j.cor.2013.11.021.

[35]

H. Y. Wu and X. H. Han, Production decisions in manufacturer competing closed-loop supply chains under remanufacturing costs disruptions scenarios, Comput. Interg. Manuf. Syst., 22 (2016), 1129-1138. 

[36]

L. Wu, L. Liu and Z. Wang, Competitive remanufacturing and pricing strategy with contrast effect and assimilation effect, J. Clean. Prod., 257 (2020), 120333. doi: 10.1016/j. jclepro. 2020.120333.

[37]

M. Z. Xu and F. Tang, Coordination mechanism of dual-channel closed-loop supply chain based on third-party collection, Comput. Interg. Manuf. Syst., 19 (2013), 2083-2089. 

[38]

A.-T. Yang and L.-D. Zhao, Supply chain network equilibrium with revenue sharing contract under demand disruptions, Int. J. Aut. Comput., 8 (2011), 177-184.  doi: 10.1007/s11633-011-0571-7.

[39]

F. M. Yao and C. X. Teng, Decision and coordination for competitive closed-loop supply chains with third-party collector dominated by a retailer, J. Syst. Eng., 34 (2019), 93-101. 

[40]

A. Yenipazarli, Managing new and remanufactured products to mitigate environmental damage under emissions regulation, European J. Oper. Res., 249 (2016), 117-130.  doi: 10.1016/j.ejor.2015.08.020.

[41]

Y. Y. Yi and J. M. Liang, Coordination of remanufacturing closed-loop supply chain under premium and penalty mechanism, Comput. Interg. Manuf. Syst., 19 (2013), 841-849. 

[42]

K. F. Yuan, G. Q. Wu, H. Dong et al., Differential pricing and emission reduction in remanufacturing supply chains with dual-sale channels under CCT-mechanism, Sustainability, 12 (2020), 8150.

[43]

Y. J. Zhang, C. X. Guo and L. C. Wang, Supply chain strategy analysis of low carbon subsidy policies based on carbon trading, Sustainability, 12 (2020), 3532.

[44]

L. ZhangJ. Wang and J. You, Consumer environmental awareness and channel coordination with two substitutable products, European J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.

[45]

J. ZhaoJ. Wei and M. Li, Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain, J. Clean. Prod., 167 (2017), 530-544.  doi: 10.1016/j.jclepro.2017.07.254.

Figure 1.  System architecture of the recycling and remanufacturing supply chain
Figure 2.  The impact of $ \lambda $ on manufacturer's sale price
Figure 3.  The impact of $ \lambda $ on market demand
Figure 4.  The impact of $ \lambda $ on profits
Figure 5.  The impact of $ \kappa $ on $ b_{m}^{MRC} $ and $ b_{m}^{MS} $
Figure 6.  The impact of $ \kappa $ on $ \eta_{m}^{MS} $
Figure 7.  The impact of $ \kappa $ on $ f_{R}^{MS} $
Figure 8.  The impact of $ \kappa $ on $ f^{MRC} $
Figure 9.  The impact of $ \kappa $ on $ f^{ MS} $
Figure 10.  The impact of κ on f1MS
Figure 11.  The impact of κ on f2MS
Figure 12.  The impact of $ \lambda $ and $ \kappa $ on $ f^{ MRC} $
Figure 13.  The impact of $ \lambda $ and $ \kappa $ on $ f^{ MS} $
Figure 14.  The impact of $ \sigma $ on $ b_{m}^{MRC} $ and $ b_{m}^{MS} $
Figure 15.  The impact of $ \sigma $ on $ \eta_{m}^{MS} $
Figure 16.  The impact of $ \sigma $ on profits
Figure 17.  The impact of θ on f1MST
Figure 18.  The impact of θ on f2MST
Figure 19.  The impact of $ \theta $ on $ f_{R}^{MST} $
Table 1.  Indices
m Manufacturer (m=1, 2)
r Recycler (r=1, 2, 3, ...R)
m Manufacturer (m=1, 2)
r Recycler (r=1, 2, 3, ...R)
Table 2.  Decision variables
$ p_{m} $ The unit sale price for new and remanufactured products of manufacturer m
$ b_{m} $ The unit recycling price specified by the recycler for the used products needed by the manufacturer m
$ \eta_{m} $ The unit price at which manufacturer m repurchases used products from recyclers
$ p_{m} $ The unit sale price for new and remanufactured products of manufacturer m
$ b_{m} $ The unit recycling price specified by the recycler for the used products needed by the manufacturer m
$ \eta_{m} $ The unit price at which manufacturer m repurchases used products from recyclers
Table 3.  Definition of Parameters
$\textit{R}$ Number of recyclers
$ c_{mn} $ The unit cost required by the manufacturer m to manufacture a new product
$ c_{mz} $ The unit cost required for manufacturer m to remanufacture the product
$ \omega_{m} $ Manufacturer m uses the used products for remanufacturing cost savings
$ \sigma $ Remanufacturing ratio of recycled used products. It reflects the quality of recycled used products, 0$ \leq $$ \sigma $$ \leq $1
$\textit{s}$ The government subsidies for recycler to recycle every unit of used products
$ c_{d} $ The unit cost for recyclers to dispose of used products
$ c_{q} $ The unit cost for recyclers to dispose of other used products that cannot be used for remanufacturing
$ \delta_{r} $ Economies of market scale for recyclers r, 0 < $ \delta_{r} < $1
$ \lambda $ The intensity of competition between two manufacturers that can replace new products, 0 < $ \lambda < $1, competition, the more intense the competition among manufacturers.
$ \mu $ Market capacity, $ \mu > $0
$ \psi $ When the recycling price is zero, the number of used products voluntarily returned by the consumer market which reflect consumers' environmental awareness, $ \psi > $0
$ \kappa $ The intensity of recycling competition between two used products, 0 < $ \kappa < $1
$\textit{R}$ Number of recyclers
$ c_{mn} $ The unit cost required by the manufacturer m to manufacture a new product
$ c_{mz} $ The unit cost required for manufacturer m to remanufacture the product
$ \omega_{m} $ Manufacturer m uses the used products for remanufacturing cost savings
$ \sigma $ Remanufacturing ratio of recycled used products. It reflects the quality of recycled used products, 0$ \leq $$ \sigma $$ \leq $1
$\textit{s}$ The government subsidies for recycler to recycle every unit of used products
$ c_{d} $ The unit cost for recyclers to dispose of used products
$ c_{q} $ The unit cost for recyclers to dispose of other used products that cannot be used for remanufacturing
$ \delta_{r} $ Economies of market scale for recyclers r, 0 < $ \delta_{r} < $1
$ \lambda $ The intensity of competition between two manufacturers that can replace new products, 0 < $ \lambda < $1, competition, the more intense the competition among manufacturers.
$ \mu $ Market capacity, $ \mu > $0
$ \psi $ When the recycling price is zero, the number of used products voluntarily returned by the consumer market which reflect consumers' environmental awareness, $ \psi > $0
$ \kappa $ The intensity of recycling competition between two used products, 0 < $ \kappa < $1
Table 4.  The main parameter values
$ R $ $ S $ $ c_{d} $ $ c_{q} $ $ \delta_{1} $ $ \delta_{2} $ $ \delta_{3} $ $ \mu $
3 2 2 3 0.1 0.2 0.3 150
$ c_{1n} $ $ c_{1z} $ $ \omega_{1} $ $ c_{2n} $ $ c_{2z} $ $ \omega_{2} $ $ \psi $
40 15 25 30 15 20 3
$ R $ $ S $ $ c_{d} $ $ c_{q} $ $ \delta_{1} $ $ \delta_{2} $ $ \delta_{3} $ $ \mu $
3 2 2 3 0.1 0.2 0.3 150
$ c_{1n} $ $ c_{1z} $ $ \omega_{1} $ $ c_{2n} $ $ c_{2z} $ $ \omega_{2} $ $ \psi $
40 15 25 30 15 20 3
Table 5.  The optimal solutions in the MRC model and the MS model before the coordination mechanism is adopted
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MRC 145 140 9.35 6.87 - - - - - 14371
MS 118 114 2.79 1.71 11.71 9.52 6207 7072 157 13436
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MRC 145 140 9.35 6.87 - - - - - 14371
MS 118 114 2.79 1.71 11.71 9.52 6207 7072 157 13436
Table 6.  The optimal solution under the coordination mechanism
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MS model 117.7 114 2.8 1.7 11.7 9.5 6207 7072 157 13436
Coordination1 mechanism1 117.7 114 9.35 6.87 10.45 8.45 6241 7099 206 13546
Coordination2 1mechanism2 117.7 114 9.35 6.87 9.24 7.49 6257 7109 180 13546
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MS model 117.7 114 2.8 1.7 11.7 9.5 6207 7072 157 13436
Coordination1 mechanism1 117.7 114 9.35 6.87 10.45 8.45 6241 7099 206 13546
Coordination2 1mechanism2 117.7 114 9.35 6.87 9.24 7.49 6257 7109 180 13546
[1]

Chao Zhao, Jixiang Song. Coordination of dual-channel supply chain considering differential pricing and loss-aversion based on quality control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022053

[2]

Bin Chen, Wenying Xie, Fuyou Huang, Juan He. Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2903-2924. doi: 10.3934/jimo.2020100

[3]

Tinghai Ren, Kaifu Yuan, Dafei Wang, Nengmin Zeng. Effect of service quality on software sales and coordination mechanism in IT service supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021165

[4]

You Zhao, Zibin Cui, Jianxin Chen, Rui Hou. Pricing and quality decisions in a supply chain with consumers' privacy concern. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021226

[5]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial and Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[6]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[7]

Guangzhou Yan, Qinyu Song, Yaodong Ni, Xiangfeng Yang. Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021181

[8]

Fuyou Huang, Juan He, Jian Wang. Coordination of VMI supply chain with a loss-averse manufacturer under quality-dependency and marketing-dependency. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1753-1772. doi: 10.3934/jimo.2018121

[9]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial and Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[10]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial and Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[11]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial and Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[12]

Yang Yang, Guanxin Yao. Fresh agricultural products supply chain coordination considering consumers' dual preferences under carbon cap-and-trade mechanism. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022032

[13]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[14]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1603-1627. doi: 10.3934/jimo.2021035

[15]

Dingzhong Feng, Xiaofeng Zhang, Ye Zhang. Collection decisions and coordination in a closed-loop supply chain under recovery price and service competition. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021117

[16]

Solaleh Sadat Kalantari, Maryam Esmaeili, Ata Allah Taleizadeh. Selling by clicks or leasing by bricks? A dynamic game for pricing durable products in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021221

[17]

Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3247-3268. doi: 10.3934/jimo.2020116

[18]

Hong Dingjun, Fu Hong, Fan Jianchang. Research on corporate social responsibility and product quality in an outsourcing supply chain. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022052

[19]

Kebing Chen, Tiaojun Xiao. Reordering policy and coordination of a supply chain with a loss-averse retailer. Journal of Industrial and Management Optimization, 2013, 9 (4) : 827-853. doi: 10.3934/jimo.2013.9.827

[20]

Chong Zhang, Yaxian Wang, Ying Liu, Haiyan Wang. Coordination contracts for a dual-channel supply chain under capital constraints. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1485-1504. doi: 10.3934/jimo.2020031

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (506)
  • HTML views (483)
  • Cited by (0)

Other articles
by authors

[Back to Top]