• Previous Article
    Optimal investment-reinsurance strategy in the correlated insurance and financial markets
  • JIMO Home
  • This Issue
  • Next Article
    Optimization of inventory system with defects, rework failure and two types of errors under crisp and fuzzy approach
doi: 10.3934/jimo.2021090
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain

School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330032, China

* Corresponding author: Xin Wu

Received  January 2021 Revised  March 2021 Early access April 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China grant 71761015 and the Science and Technology Research Project of Jiangxi Education Department of China grant GJJ150475

Consumer green preference (CGP) and fairness concern have posed significant impact on supply chain, respectively. This paper study the combined impacts of CGP and fairness concern on the supply chain that consists of a manufacturer, a green retailer, and a traditional retailer. Specifically, the optimal decision-makings are solved in seven cases, fairness neutrality (FN), the green retailer and the traditional retailer has vertical fairness concern (VFC) respectively, the two retailers has horizontal fairness concern (HFC) respectively, both retailers have vertical fairness concern (BVFC), both retailers have horizontal fairness concern (BHFC). Our main results via numerical simulation follow. (1) The improvement of CGP benefits the supply chain members except the traditional retailer. (2) The green retailer's VFC benefits itself and the whole supply chain, whereas bad for the manufacturer and the traditional retailer. However, the green retailer's HFC bad for itself, while benefits the manufacturer and the traditional retailer. (3) The traditional retailer's profits are affected by both CGP and fairness concern. (4) The high level of BVFC benefits the two retailers, but bad for the manufacturer. Conversely, the high level of BHFC will intensify competition between retailers and thus bad for them, while the manufacturer can benefit from it.

Citation: Jian Liu, Xin Wu, Jiang-Ling Lei. The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021090
References:
[1]

A. Am, B. Dk, A. Reh et al, Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, Journal of Cleaner Production, 249 (2020), 119383. Google Scholar

[2]

T. H. CuiJ. S. Raju and Z. J. Zhang, Fairness and channel coordination, Management Science, 53 (2007), 1303-1314.   Google Scholar

[3]

B. Dorothée, Environmental quality competition and taxation in the presence of green network effect among consumers, Environmental and Resource Economics, 54 (2013), 1-19.   Google Scholar

[4]

S. F. DuC. Du and L. Ling, Supply chain coordination considering fairness concerns, Journal of Management Sciences in China, 13 (2010), 41-48.   Google Scholar

[5]

S. F. DuJ. Zhu and D. Gao, Optimal decision- making for Nash bargaining fairness concerned newsvendor in two- level supply chain, Journal of Management Sciences in China, 16 (2013), 68-72.   Google Scholar

[6]

S. DuJ. Zhu and H. Jiao, Game-theoretical analysis for supply chain with consumer preference to low carbon, International Journal of Production Research, 53 (2015), 3753-3768.  doi: 10.1080/00207543.2014.988888.  Google Scholar

[7]

E. Fehr and K. M. Schmidt, A theory of fairness, competition and cooperation, Quarterly Journal of Economics, 114 (1999), 817-868.   Google Scholar

[8]

G. Ferrer and J. M. Swaminathan, Managing new and remanufactured products, Management Science, 52 (2006), 15-26.  doi: 10.1287/mnsc.1050.0465.  Google Scholar

[9]

G. Ferrer and J. M. Swaminathan, Managing new and differentiated remanufactured products, European Journal of Operational Research, 203 (2010), 370-379.  doi: 10.1016/j.ejor.2009.08.007.  Google Scholar

[10]

FrancesWesetley and Harrie, Strategic bridging: The collaboration between environmentalists and business in the marketing of green products, The Journal of Applied Behavioral Science, 27 (1991), 65-90.   Google Scholar

[11]

P. Gautam and A. Khanna, An imperfect production inventory model with setup cost reduction and carbon emission for an integrated supply chain, Uncertain Supply Chain Management, (2018), 271–286. doi: 10.5267/j.uscm.2017.11.003.  Google Scholar

[12]

P. GautamK. M. Kamna and C. K. Jaggi, Sustainable production policies under the effect of volume agility, preservation technology, and price-reliant demand, Yugosl. J. Oper. Res., 30 (2020), 305-322.  doi: 10.2298/yjor190315018g.  Google Scholar

[13]

P. GautamA. KishoreA. Khanna and C. K. Jaggi, Strategic defect management for a sustainable green supply chain, Journal of Cleaner Production, 233 (2019), 226-241.  doi: 10.1016/j.jclepro.2019.06.005.  Google Scholar

[14]

D. Ghosh and J. Shan, A comparative analysis of greening policies across supply chain structures, International Journal of Production Economics, 135 (2012), 568-583.  doi: 10.1016/j.ijpe.2011.05.027.  Google Scholar

[15]

D. Ghosh and J. Shan, Supply chain analysis under green sensitive consumer demand and cost sharing contract, International Journal of Production Economics, 164 (2015), 319-329.  doi: 10.1016/j.ijpe.2014.11.005.  Google Scholar

[16]

Y. Huang, A closed-loop supply chain with trade-in strategy under retail competition, Math. Probl. Eng., 2018 (2018), Art. ID 1510959, 16 pp. doi: 10.1155/2018/1510959.  Google Scholar

[17]

T. HoX. Su and Y. Z. Wu, Distributional and peer-induced fairness in supply chain contract design, Production and Operations Management, 23 (2014), 161-175.   Google Scholar

[18]

D. KahnemanJ. L. Knetsch and R. H. Thaler, Fairness and the assumptions of economics, The Journal of Business, 59 (1986), 285-300.  doi: 10.1086/296367.  Google Scholar

[19]

L. J. Li and X. X. Wang, Research of supply chain cooperation strategy based on consumer green preference, Journal of Industrial Technological Economics, 38 (2019), 13-22.   Google Scholar

[20]

Q. LiT. Xiao and Y. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns, Journal of Cleaner Production, 190 (2018), 303-314.  doi: 10.1016/j.jclepro.2018.04.032.  Google Scholar

[21]

Q. LiY. Zhang and Y. Huang, The impacts of fairness concern and different business objectives on the complexity of dual-channel value chains, Mathematical Problems in Engineering, 2020 (2020), 1-15.  doi: 10.1155/2020/1716084.  Google Scholar

[22]

Y. Li and D. Z. Zhao, Low-carbonization supply chain two-part tariff coordination based on fairness preference, Management Review, 26 (2014), 159-167.   Google Scholar

[23]

Y. Y. Lu, Cooperative advertising strategy and order policy under retailers' competition, J. Shandong Univ. Nat. Sci., 46 (2011), 71–78+96.  Google Scholar

[24]

N. M. ModakS. Panda and S. S. Sana, Pricing policy and coordination for a two-layer supply chain of duopolistic retailers and socially responsible manufacturer, International Journal of Logistics Research and Applications, 19 (2016), 487-508.  doi: 10.1080/13675567.2015.1085499.  Google Scholar

[25]

W. MoonW. J. Florkowski and B. Brückner, Willingness to pay for environmental practices: Implications for Eco-Labeling, Land Economics, 78 (2002), 88-102.  doi: 10.2307/3146925.  Google Scholar

[26]

T. Nie and S. Du, Dual-fairness supply chain with quantity discount contracts, European J. Oper. Res., 258 (2017), 491-500.  doi: 10.1016/j.ejor.2016.08.051.  Google Scholar

[27]

A. RoyS. S. Sana and K. Chaudhuri, Optimal Pricing of competing retailers under uncertain demand-a two layer supply chain model, Ann. Oper. Res., 260 (2018), 481-500.  doi: 10.1007/s10479-015-1996-0.  Google Scholar

[28]

R. C. Savaskan and L. Wassenhove, Reverse channel design: The case of competing retailers, Management Science, 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.  Google Scholar

[29]

E. B. TirkolaeeS. Hadian and G.-W. Weber, A robust green traffic-based routing problem for perishable products distribution, Computational Intelligence, 36 (2020), 80-101.  doi: 10.1111/coin.12240.  Google Scholar

[30]

E. B. TirkolaeeI. MahdaviM. M. S. Esfahanib and G.-W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty, Waste Management, 102 (2020), 340-350.  doi: 10.1016/j.wasman.2019.10.038.  Google Scholar

[31]

J. K. VanclayJ. Shortiss and S. Aulsebrook, Customer response to carbon labelling of groceries, Journal of Consumer Policy, 34 (2011), 153-160.   Google Scholar

[32]

S. J. Yao and J. H. Chen, After-sales service capacity of operation strategy considering retailers competition, Journal of Industrial Engineering and Engineering Management, 30 (2016), 88-95.   Google Scholar

[33]

F. M. Yao and C. X. Teng, Decision models for closed-loop supply chain with two competing retailers considering fairness concerns, Computer Integrated Manufacturing Systems, 23 (2017), 1731-1738.   Google Scholar

[34]

W. Zeng, B. L. Ma, J. Wang et al, Research on decision of the closed-loop supply chain based on consumer's green preferences, Soft Science, 32 (2018), 108–113+118. Google Scholar

[35]

L. ZhangJ. Wang and J. You, Consumer environmental awareness and channel coordination with two substitutable products, European Journal of Operational Research, 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.  Google Scholar

[36]

K. Y. ZhangY. Wu and S. W. Hou, Differential pricing strategy of considering retailer's fairness concerns in the closed-loop supply chain, Chinese Journal of Management Science, 22 (2014), 51-58.   Google Scholar

[37]

L. H. ZhangH. Zhou and Y. Y. Li, Optimal environmental quality and price with consumer environmental awareness and retailer's fairness concerns in supply chain, Journal of Cleaner Production, 213 (2019), 1063-1079.   Google Scholar

[38]

L. ZhangH. ZhouY. Liu and R. Lu, Optimal environmental quality and price with consumer environmental awareness and retailer's fairness concerns in supply chain, Journal of Cleaner Production, 213 (2019), 1063-1079.   Google Scholar

[39]

D. Zhao and S. F. Ji, Research on emission-reduction investment strategy of supply chain with fairness concerns and low-carbon preference, Management Science, 39 (2020), 94-104. Google Scholar

[40]

X. Zhen, D. Shi, S.-B. Tsai et al, Pricing decisions of a supply chain with multichannel retailer under fairness concerns, Math. Probl. Eng., 2019 (2019), Art. ID 9547302, 22 pp. doi: 10.1155/2019/9547302.  Google Scholar

[41]

Y. J. ZhouF. Y. Hu and Z. L. Zhou, Study on optimal decisions of retailer-dominated low-carbon supply chain based on fairness concern, Science and Technology Management Research, 38 (2018), 207-214.   Google Scholar

[42]

Y. H. Zhou and L. F. Wu, Research on the willingness of urban consumers to pay for low-carbon agricultural products - take low-carbon pork as an example, Journal of Agrotechnical Economics, 8 (2012), 4-12.   Google Scholar

show all references

References:
[1]

A. Am, B. Dk, A. Reh et al, Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, Journal of Cleaner Production, 249 (2020), 119383. Google Scholar

[2]

T. H. CuiJ. S. Raju and Z. J. Zhang, Fairness and channel coordination, Management Science, 53 (2007), 1303-1314.   Google Scholar

[3]

B. Dorothée, Environmental quality competition and taxation in the presence of green network effect among consumers, Environmental and Resource Economics, 54 (2013), 1-19.   Google Scholar

[4]

S. F. DuC. Du and L. Ling, Supply chain coordination considering fairness concerns, Journal of Management Sciences in China, 13 (2010), 41-48.   Google Scholar

[5]

S. F. DuJ. Zhu and D. Gao, Optimal decision- making for Nash bargaining fairness concerned newsvendor in two- level supply chain, Journal of Management Sciences in China, 16 (2013), 68-72.   Google Scholar

[6]

S. DuJ. Zhu and H. Jiao, Game-theoretical analysis for supply chain with consumer preference to low carbon, International Journal of Production Research, 53 (2015), 3753-3768.  doi: 10.1080/00207543.2014.988888.  Google Scholar

[7]

E. Fehr and K. M. Schmidt, A theory of fairness, competition and cooperation, Quarterly Journal of Economics, 114 (1999), 817-868.   Google Scholar

[8]

G. Ferrer and J. M. Swaminathan, Managing new and remanufactured products, Management Science, 52 (2006), 15-26.  doi: 10.1287/mnsc.1050.0465.  Google Scholar

[9]

G. Ferrer and J. M. Swaminathan, Managing new and differentiated remanufactured products, European Journal of Operational Research, 203 (2010), 370-379.  doi: 10.1016/j.ejor.2009.08.007.  Google Scholar

[10]

FrancesWesetley and Harrie, Strategic bridging: The collaboration between environmentalists and business in the marketing of green products, The Journal of Applied Behavioral Science, 27 (1991), 65-90.   Google Scholar

[11]

P. Gautam and A. Khanna, An imperfect production inventory model with setup cost reduction and carbon emission for an integrated supply chain, Uncertain Supply Chain Management, (2018), 271–286. doi: 10.5267/j.uscm.2017.11.003.  Google Scholar

[12]

P. GautamK. M. Kamna and C. K. Jaggi, Sustainable production policies under the effect of volume agility, preservation technology, and price-reliant demand, Yugosl. J. Oper. Res., 30 (2020), 305-322.  doi: 10.2298/yjor190315018g.  Google Scholar

[13]

P. GautamA. KishoreA. Khanna and C. K. Jaggi, Strategic defect management for a sustainable green supply chain, Journal of Cleaner Production, 233 (2019), 226-241.  doi: 10.1016/j.jclepro.2019.06.005.  Google Scholar

[14]

D. Ghosh and J. Shan, A comparative analysis of greening policies across supply chain structures, International Journal of Production Economics, 135 (2012), 568-583.  doi: 10.1016/j.ijpe.2011.05.027.  Google Scholar

[15]

D. Ghosh and J. Shan, Supply chain analysis under green sensitive consumer demand and cost sharing contract, International Journal of Production Economics, 164 (2015), 319-329.  doi: 10.1016/j.ijpe.2014.11.005.  Google Scholar

[16]

Y. Huang, A closed-loop supply chain with trade-in strategy under retail competition, Math. Probl. Eng., 2018 (2018), Art. ID 1510959, 16 pp. doi: 10.1155/2018/1510959.  Google Scholar

[17]

T. HoX. Su and Y. Z. Wu, Distributional and peer-induced fairness in supply chain contract design, Production and Operations Management, 23 (2014), 161-175.   Google Scholar

[18]

D. KahnemanJ. L. Knetsch and R. H. Thaler, Fairness and the assumptions of economics, The Journal of Business, 59 (1986), 285-300.  doi: 10.1086/296367.  Google Scholar

[19]

L. J. Li and X. X. Wang, Research of supply chain cooperation strategy based on consumer green preference, Journal of Industrial Technological Economics, 38 (2019), 13-22.   Google Scholar

[20]

Q. LiT. Xiao and Y. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns, Journal of Cleaner Production, 190 (2018), 303-314.  doi: 10.1016/j.jclepro.2018.04.032.  Google Scholar

[21]

Q. LiY. Zhang and Y. Huang, The impacts of fairness concern and different business objectives on the complexity of dual-channel value chains, Mathematical Problems in Engineering, 2020 (2020), 1-15.  doi: 10.1155/2020/1716084.  Google Scholar

[22]

Y. Li and D. Z. Zhao, Low-carbonization supply chain two-part tariff coordination based on fairness preference, Management Review, 26 (2014), 159-167.   Google Scholar

[23]

Y. Y. Lu, Cooperative advertising strategy and order policy under retailers' competition, J. Shandong Univ. Nat. Sci., 46 (2011), 71–78+96.  Google Scholar

[24]

N. M. ModakS. Panda and S. S. Sana, Pricing policy and coordination for a two-layer supply chain of duopolistic retailers and socially responsible manufacturer, International Journal of Logistics Research and Applications, 19 (2016), 487-508.  doi: 10.1080/13675567.2015.1085499.  Google Scholar

[25]

W. MoonW. J. Florkowski and B. Brückner, Willingness to pay for environmental practices: Implications for Eco-Labeling, Land Economics, 78 (2002), 88-102.  doi: 10.2307/3146925.  Google Scholar

[26]

T. Nie and S. Du, Dual-fairness supply chain with quantity discount contracts, European J. Oper. Res., 258 (2017), 491-500.  doi: 10.1016/j.ejor.2016.08.051.  Google Scholar

[27]

A. RoyS. S. Sana and K. Chaudhuri, Optimal Pricing of competing retailers under uncertain demand-a two layer supply chain model, Ann. Oper. Res., 260 (2018), 481-500.  doi: 10.1007/s10479-015-1996-0.  Google Scholar

[28]

R. C. Savaskan and L. Wassenhove, Reverse channel design: The case of competing retailers, Management Science, 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.  Google Scholar

[29]

E. B. TirkolaeeS. Hadian and G.-W. Weber, A robust green traffic-based routing problem for perishable products distribution, Computational Intelligence, 36 (2020), 80-101.  doi: 10.1111/coin.12240.  Google Scholar

[30]

E. B. TirkolaeeI. MahdaviM. M. S. Esfahanib and G.-W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty, Waste Management, 102 (2020), 340-350.  doi: 10.1016/j.wasman.2019.10.038.  Google Scholar

[31]

J. K. VanclayJ. Shortiss and S. Aulsebrook, Customer response to carbon labelling of groceries, Journal of Consumer Policy, 34 (2011), 153-160.   Google Scholar

[32]

S. J. Yao and J. H. Chen, After-sales service capacity of operation strategy considering retailers competition, Journal of Industrial Engineering and Engineering Management, 30 (2016), 88-95.   Google Scholar

[33]

F. M. Yao and C. X. Teng, Decision models for closed-loop supply chain with two competing retailers considering fairness concerns, Computer Integrated Manufacturing Systems, 23 (2017), 1731-1738.   Google Scholar

[34]

W. Zeng, B. L. Ma, J. Wang et al, Research on decision of the closed-loop supply chain based on consumer's green preferences, Soft Science, 32 (2018), 108–113+118. Google Scholar

[35]

L. ZhangJ. Wang and J. You, Consumer environmental awareness and channel coordination with two substitutable products, European Journal of Operational Research, 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.  Google Scholar

[36]

K. Y. ZhangY. Wu and S. W. Hou, Differential pricing strategy of considering retailer's fairness concerns in the closed-loop supply chain, Chinese Journal of Management Science, 22 (2014), 51-58.   Google Scholar

[37]

L. H. ZhangH. Zhou and Y. Y. Li, Optimal environmental quality and price with consumer environmental awareness and retailer's fairness concerns in supply chain, Journal of Cleaner Production, 213 (2019), 1063-1079.   Google Scholar

[38]

L. ZhangH. ZhouY. Liu and R. Lu, Optimal environmental quality and price with consumer environmental awareness and retailer's fairness concerns in supply chain, Journal of Cleaner Production, 213 (2019), 1063-1079.   Google Scholar

[39]

D. Zhao and S. F. Ji, Research on emission-reduction investment strategy of supply chain with fairness concerns and low-carbon preference, Management Science, 39 (2020), 94-104. Google Scholar

[40]

X. Zhen, D. Shi, S.-B. Tsai et al, Pricing decisions of a supply chain with multichannel retailer under fairness concerns, Math. Probl. Eng., 2019 (2019), Art. ID 9547302, 22 pp. doi: 10.1155/2019/9547302.  Google Scholar

[41]

Y. J. ZhouF. Y. Hu and Z. L. Zhou, Study on optimal decisions of retailer-dominated low-carbon supply chain based on fairness concern, Science and Technology Management Research, 38 (2018), 207-214.   Google Scholar

[42]

Y. H. Zhou and L. F. Wu, Research on the willingness of urban consumers to pay for low-carbon agricultural products - take low-carbon pork as an example, Journal of Agrotechnical Economics, 8 (2012), 4-12.   Google Scholar

Figure 1.  Proposed supply chain structure
Figure 2.  The potential demand distribution of consumers in the market
Figure 3.  Combined impacts of CGP and R1VFC on profits
Figure 4.  Combined impacts of CGP and R2VFC on profits
Figure 5.  Combined impacts of CGP and R1HFC on profits
Figure 6.  Combined impacts of CGP and R2HFC on profits
Figure 7.  Combined impacts of CGP and BVFC on profits (σ = 1.3)
Figure 8.  Combined impacts of CGP and BVFC on profits (σ = 1.9)
Figure 9.  Combined impacts of CGP and BHFC on profits (σ = 1.3)
Figure 10.  Combined impacts of CGP and BHFC on profits (σ = 1.9)
Table 1.  The literature positioning of this paper
Literature Consumer green preference Vertical fairness concern Horizontal fairness concern Both fairness concern Three-party supply chain
Vanclay et al. [31]
Ghosh et al. [14]
Moon et al. [25]
Du et al. [6]
Cui et al. [2]
Du et al. [4]
Zhang et al. [38]
Savaskan et al. [28]
Yao et al. [32]
Modak et al. [24]
Nie et al. [26]
Ho et al. [17]
Yao et al. [33]
This paper
Literature Consumer green preference Vertical fairness concern Horizontal fairness concern Both fairness concern Three-party supply chain
Vanclay et al. [31]
Ghosh et al. [14]
Moon et al. [25]
Du et al. [6]
Cui et al. [2]
Du et al. [4]
Zhang et al. [38]
Savaskan et al. [28]
Yao et al. [32]
Modak et al. [24]
Nie et al. [26]
Ho et al. [17]
Yao et al. [33]
This paper
Table 2.  Symbol and notations
Notations Definition
${{c}_{1}},{{c}_{2}}$ Unit cost for the manufacturer to produce green products and traditional products, respectively
${{w}_{1}},{{w}_{2}}$ Wholesale price of green products and traditional products, respectively
${{p}_{1}},{{p}_{2}}$ Retail price of green products and traditional products, respectively
$Q$ Potential consumers in the market
$\sigma $ Consumer green preference
${{q}_{1}},{{q}_{2}}$ Sales of green products and traditional products, respectively
${{\pi }_{m}}$ Profit function of the manufacturer
${{\pi }_{r1}}$ Profit function of the green retailer
${{\pi }_{r2}}$ Profit function of the traditional retailer
${{\pi }_{s}}$ Profit function of the whole supply chain
${{u}_{r1}}(m)$ Utility of the green retailer vertical fairness concern
${{u}_{r2}}(m)$ Utility of the traditional retailer vertical fairness concern
${{u}_{r1}}({{r}_{2}})$ Utility of the green retailer horizontal fairness concern
${{u}_{r2}}({{r}_{1}})$ Utility of the traditional retailer horizontal fairness concern
${{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}},{{\lambda }_{4}}$ Coefficients of fairness concern under different scenarios
Notations Definition
${{c}_{1}},{{c}_{2}}$ Unit cost for the manufacturer to produce green products and traditional products, respectively
${{w}_{1}},{{w}_{2}}$ Wholesale price of green products and traditional products, respectively
${{p}_{1}},{{p}_{2}}$ Retail price of green products and traditional products, respectively
$Q$ Potential consumers in the market
$\sigma $ Consumer green preference
${{q}_{1}},{{q}_{2}}$ Sales of green products and traditional products, respectively
${{\pi }_{m}}$ Profit function of the manufacturer
${{\pi }_{r1}}$ Profit function of the green retailer
${{\pi }_{r2}}$ Profit function of the traditional retailer
${{\pi }_{s}}$ Profit function of the whole supply chain
${{u}_{r1}}(m)$ Utility of the green retailer vertical fairness concern
${{u}_{r2}}(m)$ Utility of the traditional retailer vertical fairness concern
${{u}_{r1}}({{r}_{2}})$ Utility of the green retailer horizontal fairness concern
${{u}_{r2}}({{r}_{1}})$ Utility of the traditional retailer horizontal fairness concern
${{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}},{{\lambda }_{4}}$ Coefficients of fairness concern under different scenarios
Table 3.  Simulation results in R1VFC scenario $ (\sigma \rm{ = }1.3) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi}_{m}} $ 87460.32 86524.90 86036.24 85740.94 85545.31 85407.17
$ {{\pi}_{r1}} $ 5461.07 6860.16 7658.16 8173.59 8533.38 8798.38
$ {{u}_{r1}}(m) $ 5461.07 -9072.79 -23693.07 -38366.83 -53076.16 -67810.41
$ {{\pi}_{r2}} $ 4151.55 3743.56 3474.70 3283.23 3139.67 3027.98
$ {{\pi}_{s}} $ 97072.94 97128.61 97169.10 97197.76 97218.36 97233.53
$ {{w}_{1}} $ 950.00 940.76 935.74 932.61 930.47 928.93
$ {{w}_{2}} $ 700.00 702.32 703.72 704.67 705.36 705.89
$ {{p}_{1}} $ 990.48 989.44 988.47 987.64 986.96 986.39
$ {{p}_{2}} $ 730.95 731.71 732.04 732.20 732.28 732.32
$ {{q}_{1}} $ 134.92 140.92 145.25 148.52 151.08 153.13
$ {{q}_{2}} $ 134.13 127.37 122.71 119.28 119.28 114.55
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi}_{m}} $ 87460.32 86524.90 86036.24 85740.94 85545.31 85407.17
$ {{\pi}_{r1}} $ 5461.07 6860.16 7658.16 8173.59 8533.38 8798.38
$ {{u}_{r1}}(m) $ 5461.07 -9072.79 -23693.07 -38366.83 -53076.16 -67810.41
$ {{\pi}_{r2}} $ 4151.55 3743.56 3474.70 3283.23 3139.67 3027.98
$ {{\pi}_{s}} $ 97072.94 97128.61 97169.10 97197.76 97218.36 97233.53
$ {{w}_{1}} $ 950.00 940.76 935.74 932.61 930.47 928.93
$ {{w}_{2}} $ 700.00 702.32 703.72 704.67 705.36 705.89
$ {{p}_{1}} $ 990.48 989.44 988.47 987.64 986.96 986.39
$ {{p}_{2}} $ 730.95 731.71 732.04 732.20 732.28 732.32
$ {{q}_{1}} $ 134.92 140.92 145.25 148.52 151.08 153.13
$ {{q}_{2}} $ 134.13 127.37 122.71 119.28 119.28 114.55
Table 4.  Simulation results in R1VFC scenario $ (\sigma \rm{ = }1.9) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 155016.84 144556.70 138807.59 135177.66 132679.87 130857.09
$ {{\pi }_{r1}} $ 39855.63 51731.18 58474.09 62842.05 65909.71 68185.73
$ {{u}_{r1}}(m) $ 39855.63 33166.07 26340.69 19440.69 12493.58 5514.37
$ {{\pi }_{r2}} $ 1749.57 1341.72 1111.64 963.61 860.41 784.43
$ {{\pi }_{s}} $ 196622.03 197629.60 198393.33 198983.32 199449.99 199827.24
$ {{w}_{1}} $ 1250.00 1198.20 1169.67 1151.63 1139.20 1130.12
$ {{w}_{2}} $ 700.00 707.25 711.43 714.17 716.11 717.56
$ {{p}_{1}} $ 1439.39 1439.58 1438.92 1438.11 1437.33 1436.62
$ {{p}_{2}} $ 728.79 732.46 734.38 735.53 736.30 736.84
$ {{q}_{1}} $ 210.44 214.32 217.18 219.36 221.08 222.47
$ {{q}_{2}} $ 60.77 53.22 48.44 45.10 42.62 40.69
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 155016.84 144556.70 138807.59 135177.66 132679.87 130857.09
$ {{\pi }_{r1}} $ 39855.63 51731.18 58474.09 62842.05 65909.71 68185.73
$ {{u}_{r1}}(m) $ 39855.63 33166.07 26340.69 19440.69 12493.58 5514.37
$ {{\pi }_{r2}} $ 1749.57 1341.72 1111.64 963.61 860.41 784.43
$ {{\pi }_{s}} $ 196622.03 197629.60 198393.33 198983.32 199449.99 199827.24
$ {{w}_{1}} $ 1250.00 1198.20 1169.67 1151.63 1139.20 1130.12
$ {{w}_{2}} $ 700.00 707.25 711.43 714.17 716.11 717.56
$ {{p}_{1}} $ 1439.39 1439.58 1438.92 1438.11 1437.33 1436.62
$ {{p}_{2}} $ 728.79 732.46 734.38 735.53 736.30 736.84
$ {{q}_{1}} $ 210.44 214.32 217.18 219.36 221.08 222.47
$ {{q}_{2}} $ 60.77 53.22 48.44 45.10 42.62 40.69
Table 5.  Simulation results in R2VFC scenario $ (\sigma \rm{ = }1.3) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi}_{m}} $ 87460.32 86899.17 86618.75 86456.23 86352.69 86282.19
$ {{\pi}_{r1}} $ 5461.07 4999.86 4691.87 4470.61 4303.71 4173.24
$ {{\pi}_{r2}} $ 4151.55 5123.74 5674.90 6027.98 6272.30 6450.71
$ {{u}_{r2}}(m) $ 4151.55 -11231.34 -26702.65 -42228.97 -57792.01 -73380.78
$ {{\pi}_{s}} $ 97072.94 97022.77 96985.52 96954.82 96928.70 96906.13
$ {{w}_{1}} $ 950.00 952.33 953.75 954.72 955.43 955.97
$ {{w}_{2}} $ 700.00 693.48 689.96 687.77 686.28 685.21
$ {{p}_{1}} $ 990.48 991.06 991.27 991.34 991.36 991.36
$ {{p}_{2}} $ 730.95 729.78 728.78 727.96 727.29 726.74
$ {{q}_{1}} $ 134.92 129.10 125.06 122.07 119.77 117.94
$ {{q}_{2}} $ 134.13 141.12 146.16 149.96 152.93 155.32
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi}_{m}} $ 87460.32 86899.17 86618.75 86456.23 86352.69 86282.19
$ {{\pi}_{r1}} $ 5461.07 4999.86 4691.87 4470.61 4303.71 4173.24
$ {{\pi}_{r2}} $ 4151.55 5123.74 5674.90 6027.98 6272.30 6450.71
$ {{u}_{r2}}(m) $ 4151.55 -11231.34 -26702.65 -42228.97 -57792.01 -73380.78
$ {{\pi}_{s}} $ 97072.94 97022.77 96985.52 96954.82 96928.70 96906.13
$ {{w}_{1}} $ 950.00 952.33 953.75 954.72 955.43 955.97
$ {{w}_{2}} $ 700.00 693.48 689.96 687.77 686.28 685.21
$ {{p}_{1}} $ 990.48 991.06 991.27 991.34 991.36 991.36
$ {{p}_{2}} $ 730.95 729.78 728.78 727.96 727.29 726.74
$ {{q}_{1}} $ 134.92 129.10 125.06 122.07 119.77 117.94
$ {{q}_{2}} $ 134.13 141.12 146.16 149.96 152.93 155.32
Table 6.  Simulation results in R2VFC scenario $ (\sigma \rm{ = }1.9) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi}_{m}} $ 155016.8 155448.8 155762.9 156000.9 156187.4 156337.3
$ {{\pi}_{r1}} $ 39855.6 38438.3 37444.8 36708.8 36141.3 35690.3
$ {{\pi}_{r2}} $ 1749.5 1746.2 1684.0 1604.9 1524.0 1447.2
$ {{u}_{r2}}(m) $ 1749.5 -28994.2 -59947.4 -91032.7 -122206.6 -153442.8
$ {{\pi}_{s}} $ 196622.0 195633.3 194891.8 194314.7 193852.8 193474.8
$ {{w}_{1}} $ 1250.0 1252.3 1253.9 1255.1 1256.0 1256.7
$ {{w}_{2}} $ 700.0 699.0 698.6 698.4 698.3 698.3
$ {{p}_{1}} $ 1439.3 1438.3 1437.5 1436.8 1436.3 1435.9
$ {{p}_{2}} $ 728.7 724.3 721.1 718.6 716.7 715.2
$ {{q}_{1}} $ 210.4 206.6 203.9 201.9 200.3 199.1
$ {{q}_{2}} $ 60.7 69.01 74.9 79.3 82.8 85.6
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi}_{m}} $ 155016.8 155448.8 155762.9 156000.9 156187.4 156337.3
$ {{\pi}_{r1}} $ 39855.6 38438.3 37444.8 36708.8 36141.3 35690.3
$ {{\pi}_{r2}} $ 1749.5 1746.2 1684.0 1604.9 1524.0 1447.2
$ {{u}_{r2}}(m) $ 1749.5 -28994.2 -59947.4 -91032.7 -122206.6 -153442.8
$ {{\pi}_{s}} $ 196622.0 195633.3 194891.8 194314.7 193852.8 193474.8
$ {{w}_{1}} $ 1250.0 1252.3 1253.9 1255.1 1256.0 1256.7
$ {{w}_{2}} $ 700.0 699.0 698.6 698.4 698.3 698.3
$ {{p}_{1}} $ 1439.3 1438.3 1437.5 1436.8 1436.3 1435.9
$ {{p}_{2}} $ 728.7 724.3 721.1 718.6 716.7 715.2
$ {{q}_{1}} $ 210.4 206.6 203.9 201.9 200.3 199.1
$ {{q}_{2}} $ 60.7 69.01 74.9 79.3 82.8 85.6
Table 7.  Simulation results in R1HFC scenario $ (\sigma \rm{ = }1.3) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 87460.32 88162.13 88670.59 89055.92 89358.01 89601.20
$ {{\pi }_{r1}} $ 5461.07 4804.17 4323.18 3955.74 3665.87 3431.35
$ {{u}_{r1}}({{r}_{2}}) $ 5461.07 4914.64 4323.11 3702.96 3063.48 2410.34
$ {{\pi }_{r2}} $ 4151.55 4251.80 4323.35 4377.05 4418.87 4452.37
$ {{\pi }_{s}} $ 97072.94 97218.10 97317.12 97388.71 97442.75 97484.92
$ {{w}_{1}} $ 950.00 952.61 954.51 955.96 957.10 958.01
$ {{w}_{2}} $ 700.00 697.39 695.52 694.10 692.99 692.10
$ {{p}_{1}} $ 990.48 988.05 986.29 984.96 983.91 983.07
$ {{p}_{2}} $ 730.95 728.72 727.10 725.88 724.92 724.15
$ {{q}_{1}} $ 134.92 135.55 136.02 136.40 136.70 136.94
$ {{q}_{2}} $ 134.13 135.74 136.87 137.72 138.38 138.90
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 87460.32 88162.13 88670.59 89055.92 89358.01 89601.20
$ {{\pi }_{r1}} $ 5461.07 4804.17 4323.18 3955.74 3665.87 3431.35
$ {{u}_{r1}}({{r}_{2}}) $ 5461.07 4914.64 4323.11 3702.96 3063.48 2410.34
$ {{\pi }_{r2}} $ 4151.55 4251.80 4323.35 4377.05 4418.87 4452.37
$ {{\pi }_{s}} $ 97072.94 97218.10 97317.12 97388.71 97442.75 97484.92
$ {{w}_{1}} $ 950.00 952.61 954.51 955.96 957.10 958.01
$ {{w}_{2}} $ 700.00 697.39 695.52 694.10 692.99 692.10
$ {{p}_{1}} $ 990.48 988.05 986.29 984.96 983.91 983.07
$ {{p}_{2}} $ 730.95 728.72 727.10 725.88 724.92 724.15
$ {{q}_{1}} $ 134.92 135.55 136.02 136.40 136.70 136.94
$ {{q}_{2}} $ 134.13 135.74 136.87 137.72 138.38 138.90
Table 8.  Simulation results in R1HFC scenario $ (\sigma \rm{ = }1.9) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 155016.84 156077.52 156896.16 157542.60 158064.30 158493.43
$ {{\pi }_{r1}} $ 39855.63 38221.01 36996.40 36046.73 35289.49 34671.87
$ {{u}_{r1}}({{r}_{2}}) $ 39855.63 45435.93 50817.12 56069.28 61233.10 66333.79
$ {{\pi }_{r2}} $ 1749.57 2146.42 2444.61 2675.82 2859.98 3009.96
$ {{\pi }_{s}} $ 196622.03 196444.95 196337.17 196265.15 196213.77 196175.26
$ {{w}_{1}} $ 1250.00 1252.66 1254.86 1256.67 1258.18 1259.44
$ {{w}_{2}} $ 700.00 691.75 685.91 681.55 678.18 675.48
$ {{p}_{1}} $ 1439.39 1435.49 1432.54 1430.24 1428.40 1426.90
$ {{p}_{2}} $ 728.79 723.63 719.94 717.16 714.98 713.24
$ {{q}_{1}} $ 210.44 209.05 208.22 207.68 207.31 207.04
$ {{q}_{2}} $ 134.13 127.37 122.71 119.28 119.28 114.55
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 155016.84 156077.52 156896.16 157542.60 158064.30 158493.43
$ {{\pi }_{r1}} $ 39855.63 38221.01 36996.40 36046.73 35289.49 34671.87
$ {{u}_{r1}}({{r}_{2}}) $ 39855.63 45435.93 50817.12 56069.28 61233.10 66333.79
$ {{\pi }_{r2}} $ 1749.57 2146.42 2444.61 2675.82 2859.98 3009.96
$ {{\pi }_{s}} $ 196622.03 196444.95 196337.17 196265.15 196213.77 196175.26
$ {{w}_{1}} $ 1250.00 1252.66 1254.86 1256.67 1258.18 1259.44
$ {{w}_{2}} $ 700.00 691.75 685.91 681.55 678.18 675.48
$ {{p}_{1}} $ 1439.39 1435.49 1432.54 1430.24 1428.40 1426.90
$ {{p}_{2}} $ 728.79 723.63 719.94 717.16 714.98 713.24
$ {{q}_{1}} $ 210.44 209.05 208.22 207.68 207.31 207.04
$ {{q}_{2}} $ 134.13 127.37 122.71 119.28 119.28 114.55
Table 9.  Simulation results in R2HFC scenario $ (\sigma \rm{ = }1.3) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 87460.32 88162.13 88670.59 89055.92 89358.01 89601.20
$ {{\pi }_{r1}} $ 5461.07 5511.81 5550.75 5581.37 5605.99 5626.19
$ {{u}_{r2}}({{r}_{1}}) $ 4151.55 3544.17 3095.78 2751.42 2478.75 2257.54
$ {{\pi }_{r2}} $ 4151.55 3150.64 2113.79 1053.45 -23.04 -1111.10
$ {{\pi }_{s}} $ 97072.94 97218.11 97317.12 97388.71 97442.75 97484.93
$ {{w}_{1}} $ 950.00 947.39 945.49 944.04 942.90 941.99
$ {{w}_{2}} $ 700.00 702.61 704.48 705.90 707.01 707.90
$ {{p}_{1}} $ 990.48 988.05 986.29 984.96 983.91 983.07
$ {{p}_{2}} $ 730.95 728.72 727.10 725.88 724.92 724.15
$ {{q}_{1}} $ 134.92 135.55 136.02 136.40 136.70 136.94
$ {{q}_{2}} $ 134.13 135.74 136.87 137.72 138.38 138.90
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 87460.32 88162.13 88670.59 89055.92 89358.01 89601.20
$ {{\pi }_{r1}} $ 5461.07 5511.81 5550.75 5581.37 5605.99 5626.19
$ {{u}_{r2}}({{r}_{1}}) $ 4151.55 3544.17 3095.78 2751.42 2478.75 2257.54
$ {{\pi }_{r2}} $ 4151.55 3150.64 2113.79 1053.45 -23.04 -1111.10
$ {{\pi }_{s}} $ 97072.94 97218.11 97317.12 97388.71 97442.75 97484.93
$ {{w}_{1}} $ 950.00 947.39 945.49 944.04 942.90 941.99
$ {{w}_{2}} $ 700.00 702.61 704.48 705.90 707.01 707.90
$ {{p}_{1}} $ 990.48 988.05 986.29 984.96 983.91 983.07
$ {{p}_{2}} $ 730.95 728.72 727.10 725.88 724.92 724.15
$ {{q}_{1}} $ 134.92 135.55 136.02 136.40 136.70 136.94
$ {{q}_{2}} $ 134.13 135.74 136.87 137.72 138.38 138.90
Table 10.  Simulation results in R2HFC scenario $ (\sigma \rm{ = }1.9) $
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 155016.84 156077.52 156896.16 157542.60 158064.30 158493.43
$ {{\pi }_{r1}} $ 39855.63 39331.98 39020.85 38819.46 38680.82 38580.82
$ {{u}_{r2}}({{r}_{1}}) $ 1749.57 1035.45 420.15 -96.91 -531.35 -898.98
$ {{\pi }_{r2}} $ 1749.57 -6623.86 -15020.13 -23446.73 -31901.08 -40378.78
$ {{\pi }_{s}} $ 196622.04 196444.95 196337.16 196265.15 196213.77 196175.27
$ {{w}_{1}} $ 1250.00 1247.34 1245.14 1243.32 1241.82 1240.56
$ {{w}_{2}} $ 700.00 708.25 714.09 718.45 721.82 724.52
$ {{p}_{1}} $ 1439.39 1435.49 1432.54 1430.24 1428.40 1426.90
$ {{p}_{2}} $ 728.79 723.63 719.94 717.16 714.98 713.24
$ {{q}_{1}} $ 210.44 209.05 208.22 207.68 207.31 207.04
$ {{q}_{2}} $ 134.13 135.74 136.87 137.72 138.38 138.90
$ \lambda $ 0 0.2 0.4 0.6 0.8 1
$ {{\pi }_{m}} $ 155016.84 156077.52 156896.16 157542.60 158064.30 158493.43
$ {{\pi }_{r1}} $ 39855.63 39331.98 39020.85 38819.46 38680.82 38580.82
$ {{u}_{r2}}({{r}_{1}}) $ 1749.57 1035.45 420.15 -96.91 -531.35 -898.98
$ {{\pi }_{r2}} $ 1749.57 -6623.86 -15020.13 -23446.73 -31901.08 -40378.78
$ {{\pi }_{s}} $ 196622.04 196444.95 196337.16 196265.15 196213.77 196175.27
$ {{w}_{1}} $ 1250.00 1247.34 1245.14 1243.32 1241.82 1240.56
$ {{w}_{2}} $ 700.00 708.25 714.09 718.45 721.82 724.52
$ {{p}_{1}} $ 1439.39 1435.49 1432.54 1430.24 1428.40 1426.90
$ {{p}_{2}} $ 728.79 723.63 719.94 717.16 714.98 713.24
$ {{q}_{1}} $ 210.44 209.05 208.22 207.68 207.31 207.04
$ {{q}_{2}} $ 134.13 135.74 136.87 137.72 138.38 138.90
[1]

Ziyuan Zhang, Liying Yu. Joint emission reduction dynamic optimization and coordination in the supply chain considering fairness concern and reference low-carbon effect. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021155

[2]

Chirantan Mondal, Bibhas C. Giri. Investigating a green supply chain with product recycling under retailer's fairness behavior. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021129

[3]

Chuan Ding, Kaihong Wang, Shaoyong Lai. Channel coordination mechanism with retailers having fairness preference ---An improved quantity discount mechanism. Journal of Industrial & Management Optimization, 2013, 9 (4) : 967-982. doi: 10.3934/jimo.2013.9.967

[4]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[5]

Yan Zhou, Chi Kin Chan, Kar Hung Wong. The impacts of retailers' regret aversion on a random multi-period supply chain network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021086

[6]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial & Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[7]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[8]

Huimin Liu, Hui Yu. Fairness and retailer-led supply chain coordination under two different degrees of trust. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1347-1364. doi: 10.3934/jimo.2016076

[9]

Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439

[10]

Arman Hamedirostami, Alireza Goli, Yousef Gholipour-Kanani. Green cross-dock based supply chain network design under demand uncertainty using new metaheuristic algorithms. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021105

[11]

Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021107

[12]

Xue Yan, Heap-Yih Chong, Jing Zhou, Zhaohan Sheng, Feng Xu. Fairness preference based decision-making model for concession period in PPP projects. Journal of Industrial & Management Optimization, 2020, 16 (1) : 11-23. doi: 10.3934/jimo.2018137

[13]

Jing Shi, Tiaojun Xiao. Store assistance and coordination of supply chains facing consumer's return. Journal of Industrial & Management Optimization, 2016, 12 (3) : 991-1007. doi: 10.3934/jimo.2016.12.991

[14]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[15]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[16]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[17]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[18]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[19]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[20]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (208)
  • HTML views (343)
  • Cited by (0)

Other articles
by authors

[Back to Top]