[1]
|
T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, 70 (2021), 545-574.
doi: 10.1080/02331934.2020.1723586.
|
[2]
|
F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set. Valued Anal., 9 (2001), 3-11.
doi: 10.1023/A:1011253113155.
|
[3]
|
F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773-782.
doi: 10.1137/S1052623403427859.
|
[4]
|
C. Baiocchi and A. Capelo, Variational and quasivariational inequalities: Applications to free boundary problems, Wiley, New York, 1984.
|
[5]
|
R. I. Bǫt, E. R. Csetnek and A. Heinrich, A primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators, SIAM J. Optim., 23 (2013), 2011-2036.
doi: 10.1137/12088255X.
|
[6]
|
R. I. Bǫt and C. Hendrich, A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators, SIAM J. Optim., 23 (2013), 2541-2565.
doi: 10.1137/120901106.
|
[7]
|
R. I. Bǫt, E. R. Csetnek, A. Heinrich and C. Hendrich, On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems, Math. Program., 150 (2015), 251-279.
doi: 10.1007/s10107-014-0766-0.
|
[8]
|
R. I. Bǫt, E. R. Csetnek and C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math. Comput., 256 (2015), 472-487.
doi: 10.1016/j.amc.2015.01.017.
|
[9]
|
R. I. Bǫt and E. R. Csetnek, An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems, J. Optim. Theory Appl., 171 (2016), 600-616.
doi: 10.1007/s10957-015-0730-z.
|
[10]
|
R. I. Bǫt, E. R. Csetnek and P. T. Vuong, The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces, European J. Oper. Res., 287 (2020), 49-60.
doi: 10.1016/j.ejor.2020.04.035.
|
[11]
|
Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335.
doi: 10.1007/s10957-010-9757-3.
|
[12]
|
Y. Censor, A. Gibali and S. Reich, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2011), 1119-1132.
doi: 10.1080/02331934.2010.539689.
|
[13]
|
Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 56 (2012), 301-323.
doi: 10.1007/s11075-011-9490-5.
|
[14]
|
R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281-295.
doi: 10.1007/BF00941468.
|
[15]
|
S. V. Denisov, V. V. Semenov and L. M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757-765.
doi: 10.1007/s10559-015-9768-z.
|
[16]
|
Q. L. Dong, Y. J. Cho, L. L. Zhong and Th. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687-704.
doi: 10.1007/s10898-017-0506-0.
|
[17]
|
Q. L. Dong, H. B.Yuan, Y. J. Cho and Th. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12 (2018), 87-102.
doi: 10.1007/s11590-016-1102-9.
|
[18]
|
Q.-L. Dong, K. R. Kazmi, R. Ali and X.-H. Li, Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems, J. Fixed Point Theory Appl., 21 (2019), 57.
doi: 10.1007/s11784-019-0699-6.
|
[19]
|
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, vol. II. Springer, New York, 2003.
|
[20]
|
A. Gibali, D. V. Thong and P. A. Tuan, Two simple projection-type methods for solving variational inequalities, Anal. Math. Phys., 9 (2019), 2203-2225.
doi: 10.1007/s13324-019-00330-w.
|
[21]
|
R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, Elsevier, Amsterdam, 1981.
|
[22]
|
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
|
[23]
|
P. T. Harker and J.-S. Pang, A damped-newton method for the linear complementarity problem, Lect. Appl. Math., 26 (1990), 265-284.
doi: 10.1007/bf01582255.
|
[24]
|
X. Hu and J. Wang, Solving pseudo-monotone variational inequalities and pseudo-convex optimization problems using the projection neural network, IEEE Trans. Neural Netw., 17 (2006), 1487-1499.
|
[25]
|
A. N. Iusem, An iterative algorithm for the variational inequality problem, Mat. Apl. Comput., 13 (1994), 103-114.
|
[26]
|
A. Iusem and R. Gárciga Otero, Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces, Numer. Funct. Anal. Optim., 22 (2001), 609-640.
doi: 10.1081/NFA-100105310.
|
[27]
|
C. Izuchukwu, A. A. Mebawondu and O. T. Mewomo, A new method for solving split variational inequality problem without co-coerciveness, J. Fixed Point Theory Appl., 22 (2020), 98.
doi: 10.1007/s11784-020-00834-0.
|
[28]
|
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A strong convergence theorem for solving pseudo-monotone variational inequalities using projection methods, J. Optim. Theory Appl., 185 (2020), 744-766.
doi: 10.1007/s10957-020-01672-3.
|
[29]
|
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (2020), 38.
doi: 10.1007/s40314-019-1014-2.
|
[30]
|
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space, Optimization, 70 (2021), 387-412.
doi: 10.1080/02331934.2020.1716752.
|
[31]
|
G. Kassay, S. Reich and S. Sabach, Iterative methods for solving systems of variational inequalities in refelexive Banach spaces, SIAM J. Optim., 21 (2011), 1319-1344.
doi: 10.1137/110820002.
|
[32]
|
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.
|
[33]
|
I. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001.
doi: 10.1007/978-3-642-56886-2.
|
[34]
|
G. M. Korpelevič, The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody, 12 (1976), 747-756.
|
[35]
|
P.-E. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499-1515.
doi: 10.1137/060675319.
|
[36]
|
P.-E. Maingé, Convergence theorem for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236.
doi: 10.1016/j.cam.2007.07.021.
|
[37]
|
Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502-520.
doi: 10.1137/14097238X.
|
[38]
|
Y. V. Malitsky and V. V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61 (2015), 193-202.
doi: 10.1007/s10898-014-0150-x.
|
[39]
|
Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19 (2017), 2483-2510.
doi: 10.1007/s11784-017-0435-z.
|
[40]
|
Y. Shehu, O. S. Iyiola and F. U. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings: Applications to compressed sensing, Numer Algorithms, 83 (2020), 1321-1347.
doi: 10.1007/s11075-019-00727-5.
|
[41]
|
Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 56 (2019), 4.
doi: 10.1007/s10092-018-0300-5.
|
[42]
|
Y. Shuhu, Q.-L. Dong and D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68 (2019), 385-409.
doi: 10.1080/02331934.2018.1522636.
|
[43]
|
M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim., 34 (1996), 1814-1830.
doi: 10.1137/S0363012994268655.
|
[44]
|
M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776.
doi: 10.1137/S0363012997317475.
|
[45]
|
D. V. Thong and D. V. Hieu, Inertial extragradient algorithms for strongly pseudomonotone variational inequalities, J. Comput. Appl. Math., 341 (2018), 80-98.
doi: 10.1016/j.cam.2018.03.019.
|
[46]
|
D. V. Thong and D. V.Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597-610.
doi: 10.1007/s11075-017-0452-4.
|
[47]
|
D. V. Thong and D. V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms, 78 (2018), 1045-1060.
doi: 10.1007/s11075-017-0412-z.
|
[48]
|
D. V. Thong and D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer Algorithms, 80 (2019), 1283-1307.
doi: 10.1007/s11075-018-0527-x.
|
[49]
|
D. V. Thong, N. T. Vinh and Y. J. Cho, Accelerated subgradient extragradient methods for variational inequality problems, J. Sci. Comput., 80 (2019), 1438-1462.
doi: 10.1007/s10915-019-00984-5.
|
[50]
|
D. V. Thong, D. Van Hieu and T. M. Rassias, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optim. Lett., 14 (2020), 115-144.
doi: 10.1007/s11590-019-01511-z.
|
[51]
|
D. V. Thong and A. Gibali, Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities, J. Fixed Point Theory Appl., 21 (2019), 20.
doi: 10.1007/s11784-018-0656-9.
|
[52]
|
D. V. Thong, N. T. Vinh and Y. J. Cho, New strong convergence theorem of the inertial projection and contraction method for variational inequality problems, Numer Algorithms, 84 (2020), 285-305.
doi: 10.1007/s11075-019-00755-1.
|
[53]
|
D. V. Thong and D. Van Hieu, Strong convergence of extragradient methods with a new step size for solving variational inequality problems, Comp. Appl. Math., 38 (2019), 136.
doi: 10.1007/s40314-019-0899-0.
|
[54]
|
D. V. Thong, Y. Shehu and O. S. Iyiola, Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings, Numer. Algorithms, 84 (2020), 795-823.
doi: 10.1007/s11075-019-00780-0.
|
[55]
|
D. V. Thong and D. V. Hieu, New extragradient methods for solving variational inequality problems and fixed point problems, J. Fixed Point Theory Appl., 20 (2018), 129.
doi: 10.1007/s11784-018-0610-x.
|
[56]
|
D. V. Thong and D. V. Hieu, Modified Tseng's extragradient algorithms for variational inequality problems, J. Fixed Point Theory Appl., 20 (2018), 152.
doi: 10.1007/s11784-018-0634-2.
|
[57]
|
D. V. Thong, N. A. Triet, X.-H. Li and Q.-L. Dong, Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems, Numer. Algorithms, 83 (2020), 1123-1143.
doi: 10.1007/s11075-019-00718-6.
|
[58]
|
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446.
doi: 10.1137/S0363012998338806.
|
[59]
|
F. Wang and H.-K. Xu, Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng's extragradient method, Taiwan. J. Math., 16 (2012), 1125-1136.
doi: 10.11650/twjm/1500406682.
|
[60]
|
H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256.
doi: 10.1112/S0024610702003332.
|