[1]
|
P. Bertoldi, M. Avgerinou and L. Castellazzi, Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency, Technical Report, Publications Office of the European Union, Luxembourg, 2017.
|
[2]
|
C. Cheng, J. Li and Y. Wang, An energy-saving task scheduling strategy based on vacation queuing theory in cloud computing, Tsinghua Science and Technology, 20 (2015), 28-39.
doi: 10.1109/TST.2015.7040511.
|
[3]
|
B. D. Choi, B. Kim and D. Zhu, MAP/M/$c$ queue with constant impatient time, Mathematics of Operations Research, 29 (2004), 309-325.
doi: 10.1287/moor.1030.0081.
|
[4]
|
D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin and J. Zeng, Q-learning based dynamic task scheduling for energy-efficient cloud computing, Future Generation Computer Systems, 108 (2020), 361-371.
doi: 10.1016/j.future.2020.02.018.
|
[5]
|
S. A. Dudin and O. S. Dudina, Call center operation model as a MAP/PH/$N$/$R-N$ system with impatient customers, Problems of Information Transmission, 47 (2011), 364-377.
doi: 10.1134/S0032946011040053.
|
[6]
|
O. Dudina and S. Dudin, Queueing system MAP/M/$N$/$N$+$K$ operating in random environment as a model of call center, in BWWQT, Minsk, Belarus, 2013, 83–92.
doi: 10.1007/978-3-642-35980-4_10.
|
[7]
|
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in MHS'95, Nagoya, Japan, 1995, 39–43.
doi: 10.1109/MHS.1995.494215.
|
[8]
|
A. H. Gandomi, X.-S. Yang, S. Talatahari and A. H. Alavi, Firefly algorithm with chaos, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 89-98.
doi: 10.1016/j.cnsns.2012.06.009.
|
[9]
|
Q.-M. He, Fundamentals of Matrix-Analytic Methods, Springer, New York, 2014.
doi: 10.1007/978-1-4614-7330-5.
|
[10]
|
T. Hirai, H. Masuyama, S. Kasahara and Y. Takahashi, Performance optimization of parallel-distributed processing with checkpointing for cloud environment, Journal of Industrial and Management Optimization, 14 (2018), 1423–-1442.
doi: 10.3934/jimo.2018014.
|
[11]
|
X. Huang, D. Wu and N. Zhao, Study of performance measures and energy consumption for cloud computing centers based on queueing theory, Journal of Physics: Conference Series, 1631 (2020), 25-26.
doi: 10.1088/1742-6596/1631/1/012155.
|
[12]
|
S. Jin, H. Wu and W. Yue, Pricing policy for a cloud registration service with a novel cloud architecture, Cluster Computing, 22 (2019), 271-283.
doi: 10.1007/s10586-018-2854-z.
|
[13]
|
S. Jin, S. Hao, X. Qie and W. Yue, A virtual machine scheduling strategy with a speed switch and a multi-sleep mode in cloud data centers, Journal of Systems Science and Systems Engineering, 28 (2019), 194-210.
doi: 10.1007/s11518-018-5401-9.
|
[14]
|
S. Jing, S. Ali, K. She and Y. Zhong, State-of-the-art research study for green cloud computing, The Journal of Supercomputing, 65 (2013), 445-468.
doi: 10.1007/s11227-011-0722-1.
|
[15]
|
H. Khazaei, J. Mišić and V. B. Mišić, Performance analysis of cloud computing centers, in QShine, Houston, USA, 2010,251–264.
doi: 10.1007/978-3-642-29222-4_18.
|
[16]
|
Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers, Queueing Systems, 47 (2004), 5-43.
doi: 10.1023/B:QUES.0000032798.65858.19.
|
[17]
|
Y. Liu, L. Wang, X. Wang, X. Xu and P. Jiang, Cloud manufacturing: Key issues and future perspectives, International Journal of Computer Integrated Manufacturing, 32 (2019), 858-874.
doi: 10.1080/0951192X.2019.1639217.
|
[18]
|
L. Luo, W. Wu and F. Zhang, Energy modeling based on cloud data center, Journal of Software, 25 (2014), 1371-1387.
|
[19]
|
A. Manzoor, Cloud Security: Concepts, Methodologies, Tools, and Applications, IGI Global, Hershey, PA, 2019.
|
[20]
|
S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications, 27 (2016), 1053-1073.
doi: 10.1007/s00521-015-1920-1.
|
[21]
|
B. K. Patle, A. Pandey, A. Jagadeesh and D. R. Parhi, Path planning in uncertain environment by using firefly algorithms, Defence Technology, 14 (2018), 691-701.
doi: 10.1016/j.dt.2018.06.004.
|
[22]
|
T. Phung-Duc and K. Kawanishi, Multiserver retrial queue with setup time and its application to data centers, Journal of Industrial and Management Optimization, 15 (2019), 15-35.
doi: 10.3934/jimo.2018030.
|
[23]
|
QYResearch, Global Cloud Accounting Software Market Size, Status and Forecast 2025, Technical Report, Albany, NY, 2018.
|
[24]
|
J. Shaler Stidham, Optimal Design of Queueing Systems, Chapman and Hall, New York, 2009.
doi: 10.1201/9781420010008.
|
[25]
|
G. Shao and J. Chen, A load balancing strategy based on data correlation in cloud computing, in UCC, Shanghai, China, 2016,364–368.
doi: 10.1145/2996890.3007852.
|
[26]
|
N. Sharma and R. Guddeti, Multi-objective energy efficient virtual machines allocation at the cloud data center, IEEE Transactions on Services Computing, 12 (2019), 158-171.
doi: 10.1109/TSC.2016.2596289.
|
[27]
|
M. J. Usman, A. S. Ismail, G. Abdul-Salaam, H. Chizari, O. Kaiwartya, A. Y. Gital, M. Abdullahi, A. Aliyu and S. I. Dishing, Energy-efficient nature-inspired techniques in cloud computing datacenters, Telecommunication Systems, 71 (2019), 275-302.
doi: 10.1007/s11235-019-00549-9.
|
[28]
|
J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella and J. Rius, A queuing theory model for cloud computing, The Journal of Supercomputing, 69 (2014), 492-507.
doi: 10.1007/s11227-014-1177-y.
|
[29]
|
G.-G. Wang, L. Guo, H. Duan and H. Wang, A new improved firefly algorithm for global numerical optimization, Journal of Computational & Theoretical Nanoscience, 11 (2014), 477-485.
doi: 10.1166/jctn.2014.3383.
|
[30]
|
X. Wang, J. Zhu, S. Jin, W. Yue and Y. Takahashi, Performance evaluation and social optimization of an energy-saving virtual machine allocation scheme within a cloud environment, Journal of the Operations Research Society of China, 8 (2020), 561-580.
doi: 10.1007/s40305-019-00272-x.
|
[31]
|
Y. C. Wang, J. S. Wang and F. H. Tsai, Analysis of discrete-time space priority queue with fuzzy threshold, Journal of Industrial and Management Optimization, 5 (2009), 467-479.
doi: 10.3934/jimo.2009.5.467.
|
[32]
|
Z.-Q. Wu and X.-B. Zhao, Frequency ${H}_2/{H}_{ \infty}$ optimizing control for isolated microgrid based on IPSO algorithm, Journal of Industrial and Management Optimization, 14 (2018), 1565-1577.
doi: 10.3934/jimo.2018021.
|
[33]
|
X. Yan, S. Jin, W. Yue and Y. Takahashi, A MAP-based performance analysis on an energy-saving mechanism in cloud computing, in QTNA, Ghent, Belgium, 2019,369–378.
doi: 10.1007/978-3-030-27181-7_22.
|
[34]
|
X.-S. Yang, Firefly algorithms for multimodal optimization, in SAGA, Sapporo, Japan, 2009,169–178.
doi: 10.1007/978-3-642-04944-6_14.
|
[35]
|
X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation, 2 (2010), 78-84.
doi: 10.1504/IJBIC.2010.032124.
|
[36]
|
H. Yeganeh, A. Salahi and M. A. Pourmina, A novel cost optimization method for mobile cloud computing by capacity planning of green data center with dynamic pricing, Canadian Journal of Electrical and Computer Engineering, 42 (2019), 41-51.
doi: 10.1109/CJECE.2019.2890833.
|
[37]
|
W. Zhao, X. Wang, S. Jin, W. Yue and Y. Takahashi, An energy efficient task scheduling strategy in a cloud computing system and its performance evaluation using a two-dimensional continuous time Markov chain model, Electronics, 8 (2019), 775-790.
doi: 10.3390/electronics8070775.
|
[38]
|
Z. Zhou and Z. Zhou, A MAP/M/$N$ retrial queueing model with asynchronous single vacations, in ICVRIS, Changsha, China, 2018,245–249.
doi: 10.1109/ICVRIS.2018.00067.
|