• Previous Article
    Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions
  • JIMO Home
  • This Issue
  • Next Article
    Stochastic comparisons of series-parallel and parallel-series systems with dependence between components and also of subsystems
doi: 10.3934/jimo.2021106
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Performance analysis and system optimization of an energy-saving mechanism in cloud computing with correlated traffic

1. 

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. 

Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Yanshan University, Qinhuangdao 066004, China

3. 

Langfang Yanjing Vocational Technical College, Langfang 065200, China

4. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

5. 

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

* Corresponding author: Shunfu Jin

Received  September 2020 Revised  April 2021 Early access June 2021

Energy consumption is becoming a significant part of overall operational cost in cloud data centers. For the purpose of satisfying the Service Level Agreement (SLA) of cloud users while enhancing the energy efficiency in cloud computing systems, in this paper we propose an energy-saving mechanism with a sleep mode. Taking into consideration the traffic's correlation and the stochastical behavior of data arrival requests in a random cloud environment with the proposed energy-saving mechanism, we model the system as a MAP/M/$ N $/$ N $+$ K $ queue with a synchronous multi-vacation. Then, we present a theoretical basis for analyzing and evaluating the system performance by taking a state transition rate matrix in the steady state. Next, we investigate the change trends for the energy saving rate of the system and the average latency of tasks by carrying out numerical experiments. Moreover, we give a

Citation: Xuena Yan, Shunfu Jin, Wuyi Yue, Yutaka Takahashi. Performance analysis and system optimization of an energy-saving mechanism in cloud computing with correlated traffic. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021106
References:
[1]

P. Bertoldi, M. Avgerinou and L. Castellazzi, Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency, Technical Report, Publications Office of the European Union, Luxembourg, 2017.

[2]

C. ChengJ. Li and Y. Wang, An energy-saving task scheduling strategy based on vacation queuing theory in cloud computing, Tsinghua Science and Technology, 20 (2015), 28-39.  doi: 10.1109/TST.2015.7040511.

[3]

B. D. ChoiB. Kim and D. Zhu, MAP/M/$c$ queue with constant impatient time, Mathematics of Operations Research, 29 (2004), 309-325.  doi: 10.1287/moor.1030.0081.

[4]

D. DingX. FanY. ZhaoK. KangQ. Yin and J. Zeng, Q-learning based dynamic task scheduling for energy-efficient cloud computing, Future Generation Computer Systems, 108 (2020), 361-371.  doi: 10.1016/j.future.2020.02.018.

[5]

S. A. Dudin and O. S. Dudina, Call center operation model as a MAP/PH/$N$/$R-N$ system with impatient customers, Problems of Information Transmission, 47 (2011), 364-377.  doi: 10.1134/S0032946011040053.

[6]

O. Dudina and S. Dudin, Queueing system MAP/M/$N$/$N$+$K$ operating in random environment as a model of call center, in BWWQT, Minsk, Belarus, 2013, 83–92. doi: 10.1007/978-3-642-35980-4_10.

[7]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in MHS'95, Nagoya, Japan, 1995, 39–43. doi: 10.1109/MHS.1995.494215.

[8]

A. H. GandomiX.-S. YangS. Talatahari and A. H. Alavi, Firefly algorithm with chaos, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 89-98.  doi: 10.1016/j.cnsns.2012.06.009.

[9]

Q.-M. He, Fundamentals of Matrix-Analytic Methods, Springer, New York, 2014. doi: 10.1007/978-1-4614-7330-5.

[10]

T. Hirai, H. Masuyama, S. Kasahara and Y. Takahashi, Performance optimization of parallel-distributed processing with checkpointing for cloud environment, Journal of Industrial and Management Optimization, 14 (2018), 1423–-1442. doi: 10.3934/jimo.2018014.

[11]

X. HuangD. Wu and N. Zhao, Study of performance measures and energy consumption for cloud computing centers based on queueing theory, Journal of Physics: Conference Series, 1631 (2020), 25-26.  doi: 10.1088/1742-6596/1631/1/012155.

[12]

S. JinH. Wu and W. Yue, Pricing policy for a cloud registration service with a novel cloud architecture, Cluster Computing, 22 (2019), 271-283.  doi: 10.1007/s10586-018-2854-z.

[13]

S. JinS. HaoX. Qie and W. Yue, A virtual machine scheduling strategy with a speed switch and a multi-sleep mode in cloud data centers, Journal of Systems Science and Systems Engineering, 28 (2019), 194-210.  doi: 10.1007/s11518-018-5401-9.

[14]

S. JingS. AliK. She and Y. Zhong, State-of-the-art research study for green cloud computing, The Journal of Supercomputing, 65 (2013), 445-468.  doi: 10.1007/s11227-011-0722-1.

[15]

H. Khazaei, J. Mišić and V. B. Mišić, Performance analysis of cloud computing centers, in QShine, Houston, USA, 2010,251–264. doi: 10.1007/978-3-642-29222-4_18.

[16]

Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers, Queueing Systems, 47 (2004), 5-43.  doi: 10.1023/B:QUES.0000032798.65858.19.

[17]

Y. LiuL. WangX. WangX. Xu and P. Jiang, Cloud manufacturing: Key issues and future perspectives, International Journal of Computer Integrated Manufacturing, 32 (2019), 858-874.  doi: 10.1080/0951192X.2019.1639217.

[18]

L. LuoW. Wu and F. Zhang, Energy modeling based on cloud data center, Journal of Software, 25 (2014), 1371-1387. 

[19]

A. Manzoor, Cloud Security: Concepts, Methodologies, Tools, and Applications, IGI Global, Hershey, PA, 2019.

[20]

S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications, 27 (2016), 1053-1073.  doi: 10.1007/s00521-015-1920-1.

[21]

B. K. PatleA. PandeyA. Jagadeesh and D. R. Parhi, Path planning in uncertain environment by using firefly algorithms, Defence Technology, 14 (2018), 691-701.  doi: 10.1016/j.dt.2018.06.004.

[22]

T. Phung-Duc and K. Kawanishi, Multiserver retrial queue with setup time and its application to data centers, Journal of Industrial and Management Optimization, 15 (2019), 15-35.  doi: 10.3934/jimo.2018030.

[23]

QYResearch, Global Cloud Accounting Software Market Size, Status and Forecast 2025, Technical Report, Albany, NY, 2018.

[24]

J. Shaler Stidham, Optimal Design of Queueing Systems, Chapman and Hall, New York, 2009. doi: 10.1201/9781420010008.

[25]

G. Shao and J. Chen, A load balancing strategy based on data correlation in cloud computing, in UCC, Shanghai, China, 2016,364–368. doi: 10.1145/2996890.3007852.

[26]

N. Sharma and R. Guddeti, Multi-objective energy efficient virtual machines allocation at the cloud data center, IEEE Transactions on Services Computing, 12 (2019), 158-171.  doi: 10.1109/TSC.2016.2596289.

[27]

M. J. UsmanA. S. IsmailG. Abdul-SalaamH. ChizariO. KaiwartyaA. Y. GitalM. AbdullahiA. Aliyu and S. I. Dishing, Energy-efficient nature-inspired techniques in cloud computing datacenters, Telecommunication Systems, 71 (2019), 275-302.  doi: 10.1007/s11235-019-00549-9.

[28]

J. VilaplanaF. SolsonaI. TeixidóJ. MateoF. Abella and J. Rius, A queuing theory model for cloud computing, The Journal of Supercomputing, 69 (2014), 492-507.  doi: 10.1007/s11227-014-1177-y.

[29]

G.-G. WangL. GuoH. Duan and H. Wang, A new improved firefly algorithm for global numerical optimization, Journal of Computational & Theoretical Nanoscience, 11 (2014), 477-485.  doi: 10.1166/jctn.2014.3383.

[30]

X. WangJ. ZhuS. JinW. Yue and Y. Takahashi, Performance evaluation and social optimization of an energy-saving virtual machine allocation scheme within a cloud environment, Journal of the Operations Research Society of China, 8 (2020), 561-580.  doi: 10.1007/s40305-019-00272-x.

[31]

Y. C. WangJ. S. Wang and F. H. Tsai, Analysis of discrete-time space priority queue with fuzzy threshold, Journal of Industrial and Management Optimization, 5 (2009), 467-479.  doi: 10.3934/jimo.2009.5.467.

[32]

Z.-Q. Wu and X.-B. Zhao, Frequency ${H}_2/{H}_{ \infty}$ optimizing control for isolated microgrid based on IPSO algorithm, Journal of Industrial and Management Optimization, 14 (2018), 1565-1577.  doi: 10.3934/jimo.2018021.

[33]

X. Yan, S. Jin, W. Yue and Y. Takahashi, A MAP-based performance analysis on an energy-saving mechanism in cloud computing, in QTNA, Ghent, Belgium, 2019,369–378. doi: 10.1007/978-3-030-27181-7_22.

[34]

X.-S. Yang, Firefly algorithms for multimodal optimization, in SAGA, Sapporo, Japan, 2009,169–178. doi: 10.1007/978-3-642-04944-6_14.

[35]

X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation, 2 (2010), 78-84.  doi: 10.1504/IJBIC.2010.032124.

[36]

H. YeganehA. Salahi and M. A. Pourmina, A novel cost optimization method for mobile cloud computing by capacity planning of green data center with dynamic pricing, Canadian Journal of Electrical and Computer Engineering, 42 (2019), 41-51.  doi: 10.1109/CJECE.2019.2890833.

[37]

W. ZhaoX. WangS. JinW. Yue and Y. Takahashi, An energy efficient task scheduling strategy in a cloud computing system and its performance evaluation using a two-dimensional continuous time Markov chain model, Electronics, 8 (2019), 775-790.  doi: 10.3390/electronics8070775.

[38]

Z. Zhou and Z. Zhou, A MAP/M/$N$ retrial queueing model with asynchronous single vacations, in ICVRIS, Changsha, China, 2018,245–249. doi: 10.1109/ICVRIS.2018.00067.

show all references

References:
[1]

P. Bertoldi, M. Avgerinou and L. Castellazzi, Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency, Technical Report, Publications Office of the European Union, Luxembourg, 2017.

[2]

C. ChengJ. Li and Y. Wang, An energy-saving task scheduling strategy based on vacation queuing theory in cloud computing, Tsinghua Science and Technology, 20 (2015), 28-39.  doi: 10.1109/TST.2015.7040511.

[3]

B. D. ChoiB. Kim and D. Zhu, MAP/M/$c$ queue with constant impatient time, Mathematics of Operations Research, 29 (2004), 309-325.  doi: 10.1287/moor.1030.0081.

[4]

D. DingX. FanY. ZhaoK. KangQ. Yin and J. Zeng, Q-learning based dynamic task scheduling for energy-efficient cloud computing, Future Generation Computer Systems, 108 (2020), 361-371.  doi: 10.1016/j.future.2020.02.018.

[5]

S. A. Dudin and O. S. Dudina, Call center operation model as a MAP/PH/$N$/$R-N$ system with impatient customers, Problems of Information Transmission, 47 (2011), 364-377.  doi: 10.1134/S0032946011040053.

[6]

O. Dudina and S. Dudin, Queueing system MAP/M/$N$/$N$+$K$ operating in random environment as a model of call center, in BWWQT, Minsk, Belarus, 2013, 83–92. doi: 10.1007/978-3-642-35980-4_10.

[7]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in MHS'95, Nagoya, Japan, 1995, 39–43. doi: 10.1109/MHS.1995.494215.

[8]

A. H. GandomiX.-S. YangS. Talatahari and A. H. Alavi, Firefly algorithm with chaos, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 89-98.  doi: 10.1016/j.cnsns.2012.06.009.

[9]

Q.-M. He, Fundamentals of Matrix-Analytic Methods, Springer, New York, 2014. doi: 10.1007/978-1-4614-7330-5.

[10]

T. Hirai, H. Masuyama, S. Kasahara and Y. Takahashi, Performance optimization of parallel-distributed processing with checkpointing for cloud environment, Journal of Industrial and Management Optimization, 14 (2018), 1423–-1442. doi: 10.3934/jimo.2018014.

[11]

X. HuangD. Wu and N. Zhao, Study of performance measures and energy consumption for cloud computing centers based on queueing theory, Journal of Physics: Conference Series, 1631 (2020), 25-26.  doi: 10.1088/1742-6596/1631/1/012155.

[12]

S. JinH. Wu and W. Yue, Pricing policy for a cloud registration service with a novel cloud architecture, Cluster Computing, 22 (2019), 271-283.  doi: 10.1007/s10586-018-2854-z.

[13]

S. JinS. HaoX. Qie and W. Yue, A virtual machine scheduling strategy with a speed switch and a multi-sleep mode in cloud data centers, Journal of Systems Science and Systems Engineering, 28 (2019), 194-210.  doi: 10.1007/s11518-018-5401-9.

[14]

S. JingS. AliK. She and Y. Zhong, State-of-the-art research study for green cloud computing, The Journal of Supercomputing, 65 (2013), 445-468.  doi: 10.1007/s11227-011-0722-1.

[15]

H. Khazaei, J. Mišić and V. B. Mišić, Performance analysis of cloud computing centers, in QShine, Houston, USA, 2010,251–264. doi: 10.1007/978-3-642-29222-4_18.

[16]

Q.-L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers, Queueing Systems, 47 (2004), 5-43.  doi: 10.1023/B:QUES.0000032798.65858.19.

[17]

Y. LiuL. WangX. WangX. Xu and P. Jiang, Cloud manufacturing: Key issues and future perspectives, International Journal of Computer Integrated Manufacturing, 32 (2019), 858-874.  doi: 10.1080/0951192X.2019.1639217.

[18]

L. LuoW. Wu and F. Zhang, Energy modeling based on cloud data center, Journal of Software, 25 (2014), 1371-1387. 

[19]

A. Manzoor, Cloud Security: Concepts, Methodologies, Tools, and Applications, IGI Global, Hershey, PA, 2019.

[20]

S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications, 27 (2016), 1053-1073.  doi: 10.1007/s00521-015-1920-1.

[21]

B. K. PatleA. PandeyA. Jagadeesh and D. R. Parhi, Path planning in uncertain environment by using firefly algorithms, Defence Technology, 14 (2018), 691-701.  doi: 10.1016/j.dt.2018.06.004.

[22]

T. Phung-Duc and K. Kawanishi, Multiserver retrial queue with setup time and its application to data centers, Journal of Industrial and Management Optimization, 15 (2019), 15-35.  doi: 10.3934/jimo.2018030.

[23]

QYResearch, Global Cloud Accounting Software Market Size, Status and Forecast 2025, Technical Report, Albany, NY, 2018.

[24]

J. Shaler Stidham, Optimal Design of Queueing Systems, Chapman and Hall, New York, 2009. doi: 10.1201/9781420010008.

[25]

G. Shao and J. Chen, A load balancing strategy based on data correlation in cloud computing, in UCC, Shanghai, China, 2016,364–368. doi: 10.1145/2996890.3007852.

[26]

N. Sharma and R. Guddeti, Multi-objective energy efficient virtual machines allocation at the cloud data center, IEEE Transactions on Services Computing, 12 (2019), 158-171.  doi: 10.1109/TSC.2016.2596289.

[27]

M. J. UsmanA. S. IsmailG. Abdul-SalaamH. ChizariO. KaiwartyaA. Y. GitalM. AbdullahiA. Aliyu and S. I. Dishing, Energy-efficient nature-inspired techniques in cloud computing datacenters, Telecommunication Systems, 71 (2019), 275-302.  doi: 10.1007/s11235-019-00549-9.

[28]

J. VilaplanaF. SolsonaI. TeixidóJ. MateoF. Abella and J. Rius, A queuing theory model for cloud computing, The Journal of Supercomputing, 69 (2014), 492-507.  doi: 10.1007/s11227-014-1177-y.

[29]

G.-G. WangL. GuoH. Duan and H. Wang, A new improved firefly algorithm for global numerical optimization, Journal of Computational & Theoretical Nanoscience, 11 (2014), 477-485.  doi: 10.1166/jctn.2014.3383.

[30]

X. WangJ. ZhuS. JinW. Yue and Y. Takahashi, Performance evaluation and social optimization of an energy-saving virtual machine allocation scheme within a cloud environment, Journal of the Operations Research Society of China, 8 (2020), 561-580.  doi: 10.1007/s40305-019-00272-x.

[31]

Y. C. WangJ. S. Wang and F. H. Tsai, Analysis of discrete-time space priority queue with fuzzy threshold, Journal of Industrial and Management Optimization, 5 (2009), 467-479.  doi: 10.3934/jimo.2009.5.467.

[32]

Z.-Q. Wu and X.-B. Zhao, Frequency ${H}_2/{H}_{ \infty}$ optimizing control for isolated microgrid based on IPSO algorithm, Journal of Industrial and Management Optimization, 14 (2018), 1565-1577.  doi: 10.3934/jimo.2018021.

[33]

X. Yan, S. Jin, W. Yue and Y. Takahashi, A MAP-based performance analysis on an energy-saving mechanism in cloud computing, in QTNA, Ghent, Belgium, 2019,369–378. doi: 10.1007/978-3-030-27181-7_22.

[34]

X.-S. Yang, Firefly algorithms for multimodal optimization, in SAGA, Sapporo, Japan, 2009,169–178. doi: 10.1007/978-3-642-04944-6_14.

[35]

X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation, 2 (2010), 78-84.  doi: 10.1504/IJBIC.2010.032124.

[36]

H. YeganehA. Salahi and M. A. Pourmina, A novel cost optimization method for mobile cloud computing by capacity planning of green data center with dynamic pricing, Canadian Journal of Electrical and Computer Engineering, 42 (2019), 41-51.  doi: 10.1109/CJECE.2019.2890833.

[37]

W. ZhaoX. WangS. JinW. Yue and Y. Takahashi, An energy efficient task scheduling strategy in a cloud computing system and its performance evaluation using a two-dimensional continuous time Markov chain model, Electronics, 8 (2019), 775-790.  doi: 10.3390/electronics8070775.

[38]

Z. Zhou and Z. Zhou, A MAP/M/$N$ retrial queueing model with asynchronous single vacations, in ICVRIS, Changsha, China, 2018,245–249. doi: 10.1109/ICVRIS.2018.00067.

Figure 1.  State transition of a PM with the energy-saving mechanism
Figure 2.  Change trend for the energy saving rate $ \omega $ of the system
Figure 3.  Change trend for the average latency $ \sigma $ of tasks
Figure 4.  Change trend for the cost function $ \phi \left(\alpha \right) $
Table 1.  Numerical results for the optimization of the energy-saving mechanism
Buffer size $ K $ VM-number $ N $ Optimal sleep parameter $ \alpha^* $ Minimal system cost $ \phi \left( \alpha^* \right) $
6 0.2860 0.8414
24 7 0.4127 0.6951
8 0.5025 0.6046
6 0.2887 0.8920
27 7 0.4407 0.7224
8 0.5439 0.6203
6 0.2942 0.9401
30 7 0.4746 0.7462
8 0.5886 0.6330
6 0.3026 0.9857
33 7 0.5141 0.7666
8 0.6346 0.6432
Buffer size $ K $ VM-number $ N $ Optimal sleep parameter $ \alpha^* $ Minimal system cost $ \phi \left( \alpha^* \right) $
6 0.2860 0.8414
24 7 0.4127 0.6951
8 0.5025 0.6046
6 0.2887 0.8920
27 7 0.4407 0.7224
8 0.5439 0.6203
6 0.2942 0.9401
30 7 0.4746 0.7462
8 0.5886 0.6330
6 0.3026 0.9857
33 7 0.5141 0.7666
8 0.6346 0.6432
[1]

Hao Song, Xiaonong Lu, Xu Zhang, Xiaoan Tang, Qiang Zhang. Collaborative optimization for energy saving and service composition in multi-granularity heavy-duty equipment cloud manufacturing environment. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022063

[2]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[3]

Masataka Kato, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of energy-saving server scheduling on power consumption for large-scale data centers. Journal of Industrial and Management Optimization, 2016, 12 (2) : 667-685. doi: 10.3934/jimo.2016.12.667

[4]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[5]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2407-2424. doi: 10.3934/jimo.2019060

[6]

Jinsong Xu. Reversible hidden data access algorithm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1219-1232. doi: 10.3934/dcdss.2019084

[7]

Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance optimization of parallel-distributed processing with checkpointing for cloud environment. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1423-1442. doi: 10.3934/jimo.2018014

[8]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial and Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[9]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[10]

Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial and Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939

[11]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[12]

Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial and Management Optimization, 2022, 18 (1) : 95-110. doi: 10.3934/jimo.2020144

[13]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial and Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[14]

Tinghai Ren, Kaifu Yuan, Dafei Wang, Nengmin Zeng. Effect of service quality on software sales and coordination mechanism in IT service supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021165

[15]

Kyosuke Hashimoto, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of backup-task scheduling with deadline time in cloud computing. Journal of Industrial and Management Optimization, 2015, 11 (3) : 867-886. doi: 10.3934/jimo.2015.11.867

[16]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036

[17]

Weidong Bao, Haoran Ji, Xiaomin Zhu, Ji Wang, Wenhua Xiao, Jianhong Wu. ACO-based solution for computation offloading in mobile cloud computing. Big Data & Information Analytics, 2016, 1 (1) : 1-13. doi: 10.3934/bdia.2016.1.1

[18]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial and Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[19]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[20]

Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial and Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]