\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain

  • * Corresponding author: Fatemeh Harsej

    * Corresponding author: Fatemeh Harsej 
Abstract Full Text(HTML) Figure(7) / Table(13) Related Papers Cited by
  • The required processes of supply chain management include optimal strategic, tactical, and operational decisions, all of which have important economic and environmental effects. In this regard, efficient supply chain planning for the production and distribution of perishable productsis of particular importance due to its leading role in the human food pyramid. One of the main challenges facing this chain is the time when products and goods are delivered to the customers and customer satisfaction will increase through this.In this research, a bi-objective mixed-integer linear programming (MILP)model is proposedto design a multi-level, multi-period, multi-product closed-loop supply chain (CLSC) for timely production and distribution of perishable products, taking into account the uncertainty of demand. To face the model uncertainty, the robust optimization (RO) method is utilized. Moreover, to solve and validate the bi-objective model in small-size problems, the $ \epsilon $-constraint method (EC) is presented. On the other hand, a Non-dominated Sorting Genetic Algorithm (NSGA-II) is developed for solving large-size problems. First, the deterministic and robust models are compared by applying the suggested solutions methods in a small-size problem, and then, the proposed solution methods are compared in large-size problems in terms of different well-known metrics. According to the comparison, the proposed model has an acceptable performance in providing the optimal solutions and the proposed algorithm obtains efficient solutions.Finally, managerial insights are proposed using sensitivity analysis of important parameters of the problem.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The proposed supply chain network

    Figure 2.  Flowchart of the proposed NSGA-II (Rabbani et al., 2021)

    Figure 3.  The Pareto solution obtained by two methods

    Figure 4.  The comparison of NSGA-II and EC at uncertainty level 0.2

    Figure 5.  The comparison of NSGA-II and EC at uncertainty level 0.4

    Figure 6.  The comparison of NSGA-II and EC at uncertainty level 0.5

    Figure 7.  The comparison of solution time for NSGA-II and EC

    Table 1.  A brief comparison between previously-performed studies and our study

    Reference Year Levels of Network Features Objectives Solution methods
    Supply centers Production centers Collection centers Recycling centers Distribution centers Recovery centers Repair center Disposal center Uncertainty Perishable products Responsiveness Environmental Social Economic
    Pishvaee et al. 2014 * * * * * * * * LINGO
    Govindan et al. 2014 * * * * Benders decomposition
    Devika et al. 2014 * * * * * * * * * * LINGO
    Azadeh et al. 2015 * * * * * * * $ \epsilon $-constraint
    Wu et al. 2017 * * * * * NSGA-II
    Keshavarz Ghorabaee et al. 2017 * * * * * * * GAMS
    Cheraghalipour et al. 2018 * * * * * * NSGA-II
    Kayvanfar et al. 2018 * * * * * * * * Benders decomposition
    Dai et al. 2018 * * * * LINGO
    Yavari andGeraeli 2019 * * * * * * * * Heuristics
    Parsa et al. 2020 * * * * * * Branch-and-bound (B & B) algorithm
    Lotfi et al. 2021 * * * * * * * * * * LP-Metric method
    Current work 2021 * * * * * * * * * * $ \epsilon $-constraint and NSGA-II
     | Show Table
    DownLoad: CSV

    Table 2.  An example of chromosome

    First Part 0.41 0.72 0.93
     
    Second Part Customer 1 Customer 2 Customer 3 Customer 4 Customer 5
    Distribution Center 1 0.61 0.29 0.43 0.27 0.35
    Distribution Center 2 0.45 0.73 0.28 0.34 0.19
    Distribution Center 3 0.35 0.91 0.73 0.58 0.39
     | Show Table
    DownLoad: CSV

    Table 3.  Interpretation of chromosome

    First Part 0 1 1
     
    Second Part Customer 1 Customer 2 Customer 3 Customer 4 Customer 5
    Distribution Center 1 0 0 0 0 0
    Distribution Center 2 0.52 0.44 0.27 0.37 0.32
    Distribution Center 3 0.48 0.56 0.73 0.63 0.68
     | Show Table
    DownLoad: CSV

    Table 4.  The value of parameters for NSGA-II

    Parameter Value
    Npop 50 80 100
    Max iteration 100 200 300
    Cross rate 0.5 0.7 0.9
    Mut rate 0.5 0.3 0.1
     | Show Table
    DownLoad: CSV

    Table 5.  The optimal value of parameters of NSGA-II

    Parameter Value
    Npop 100
    Max iteration 200
    Cross rate 0.7
    Mut rate 0.3
     | Show Table
    DownLoad: CSV

    Table 6.  The small-size instance for the supply chain network

    Set Number
    Suppliers 4
    Production centers 3
    Distribution centers 3
    Customers 5
    Collection centers 2
    Recovery centers 2
    Disposal centers 2
    Products 2
    Raw materials 2
    Time periods 1
    Technology levels 2
    Transportation modes 2
     | Show Table
    DownLoad: CSV

    Table 7.  Value of parameters

    Parameter Value
    Parameter Value
    Customer demand U(1,200)
    Quantity of raw material U(50,350)
    Capacity of suppliers U(1000, 2500)
    Capacity of production centers U(500, 2000)
    Capacity of distribution centers U(1000, 2500)
    Capacity of collection centers U(1000, 2500)
    Capacity of disposal centers U(1000, 2000)
    Capacity of recovery centers U(1000, 2000)
    Cost of transporting raw materials from the supply center to the production center U(50,150)
    Cost of transporting products from production center to distribution center U(50,150)
    Cost of transporting from distribution center to customer U(50,150)
    Cost of transporting from customer to collection center U(50,150)
    Cost of transporting from the collection center to the disposal center U(50,150)
    Cost of transporting from the collection center to the recovery center U(50,150)
    Cost of transporting from the recovery center to the production center U(50,150)
    Volume of $CO_2$ emission released to transport raw material from the supply center to the production center U(50,100)
    Volume of $CO_2$ emission released to transport products from the production center to the distribution center U(50,100)
    Volume of $CO_2$ emission released to transport from the distribution center to the customer U(50,100)
    Volume of $CO_2$ emission released to transport from customer to the collection center U(50,100)
    Volume of $CO_2$ emission released to transport from the collection center to the disposal center U(50,100)
    Volume of $CO_2$ emission released to transport from the collection center to the recovery center U(50,100)
    Volume of $CO_2$ emission released to transport from the recovery center to the production center U(50,100)
    Preparation time for transportation of raw material from the supply center to production center U(10, 20)
    Preparation time for the transportation of products from distribution center to customers U(10, 20)
    Distance between supply center and production center U(500, 1500)
    Distance between production center and distribution center U(500, 1500)
    Distance between the distribution center and customer U(500, 1500)
    Distance between customer and collection center U(500, 1500)
    Distance between collection center and disposal center U(500, 1500)
    Distance between collection center and recovery center U(500, 1500)
    Distance between recovery center and production center U(500, 1500)
    Production cost in production centers U(50,100)
    Processing cost in distribution centers U(50,100)
    Processing cost in production centers U(50,100)
    Processing cost in disposal centers U(50,100)
    Processing cost in recovery centers U(50,100)
    Fixed cost of establishing a production center U(5000, 15000)
    Fixed cost of establishing a distribution center U(5000, 15000)
    Fixed cost of establishing a collection center U(5000, 15000)
    Fixed cost of establishing a disposal center U(5000, 15000)
    Fixed cost of establishing a recovery center U(5000, 15000)
    Inventory holding cost U(100,200)
    Inventory shortage cost U(100,150)
    Consumption coefficient of raw materials U(0.3, 0.7)
    Recovery coefficient of products U(0.1, 0.4)
    Flow rate of retuned products U(0, 0.5)
    Flow rate of disposable products U(0, 0.3)
     | Show Table
    DownLoad: CSV

    Table 8.  Results of the solution methods for the robust model

    No. NSGA-II EC
    Objective 1 Objective 2 Objective 1 Objective 2
    1 860870 26703 860824 26700
    2 861031 26288 861029 26277
    3 864920 25883 864875 25854
    4 869473 25445 869468 25441
    5 874268 25014 874115 25010
     | Show Table
    DownLoad: CSV

    Table 9.  Results of the solution methods for deterministic and robust models

    Model NSGA-II EC
    Objective 1 Objective 2 CPU time Objective 1 Objective 2 CPU time
    Deterministic 858651.6 25271.3 12.94 858242.1 24971.3 31.84
    Robust 866112.4 25866.6 14.04 866062.2 25856.4 40.56
     | Show Table
    DownLoad: CSV

    Table 10.  Information of the problem instances in medium- and large- size

    Sets P1 P2 P3 P4
    Suppliers 8 15 20 40
    Production centers 5 10 15 25
    Distribution centers 5 10 15 30
    Customers 8 20 35 50
    Collection centers 4 6 10 15
    Recovery centers 4 6 10 15
    Disposal centers 4 6 10 15
    Products 4 6 10 15
    Raw materials 4 6 10 15
    Time periods 3 4 5 8
    Technology levels 3 4 5 8
    Transportation modes 3 4 5 8
     | Show Table
    DownLoad: CSV

    Table 11.  The average value of criteria for the two algorithms in the uncertainty level of 0.2

    Criteria DM MID SM NPS
    Problem/ Method EC NSGA-II EC NSGA-II EC NSGA-II EC NSGA-II
    1 1.09 1.13 0.82 0.88 1.12 1.01 4 8
    2 1. 23 1.2 1.13 1.09 1.07 0.99 2 14
    3 0.92 0.95 0.94 0.9 0.71 0.66 3 23
    4 - 1.13 - 1.55 - 2.39 - 32
     | Show Table
    DownLoad: CSV

    Table 12.  The average value of criteria for the two algorithms in the uncertainty level of 0.4

    Criteria DM MID SM NPS
    Problem/ Method EC NSGA-II EC NSGA-II EC NSGA-II EC NSGA-II
    1 1.03 1.09 0.86 0.74 2.33 2.14 3 7
    2 1.16 1.21 0.93 0.82 2.02 1.91 2 16
    3 0.75 0.69 0.79 0.83 0.72 0.92 2 28
    4 - 1.31 - 1.02 - 1.24 - 43
     | Show Table
    DownLoad: CSV

    Table 13.  The average value of criteria for the two algorithms in the uncertainty level of 0.5

    Criteria DM MID SM NPS
    Problem/ Method EC NSGA-II EC NSGA-II EC NSGA-II EC NSGA-II
    1 1.17 1.24 0.59 0.69 1.25 1.03 2 6
    2 0.84 0.93 0.32 0.23 1.97 1.51 4 15
    3 1.2 1.31 0.43 0.31 0.9 0.87 2 37
    4 - 0.71 - 0.92 - 2.34 - 52
     | Show Table
    DownLoad: CSV
  • [1] S. S. AliR. KaurF. ErsözB. AltafA. Basu and G.-W. Weber, Measuring carbon performance for sustainable green supply chain practices: A developing country scenario, Central European Journal of Operations Research, 28 (2020), 1389-1416.  doi: 10.1007/s10100-020-00673-x.
    [2] M. Alinaghian, E. B. Tirkolaee, Z. K. Dezaki, S. R. Hejazi and W. Ding, An augmented Tabu search algorithm for the green inventory-routing problem with time windows, Swarm and Evolutionary Computation, 60 (2021), 100802. doi: 10.1016/j.swevo.2020.100802.
    [3] S. H. Amin and G. Zhang, Closed-loop supply chain network configuration by a multi-objective mathematical model, International Journal of Business Performance and Supply Chain Modelling, 6 (2014), 1-15.  doi: 10.1504/IJBPSCM.2014.058890.
    [4] A. AzadehZ. Raoofi and M. Zarrin, A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach, Journal of Natural Gas Science and Engineering, 26 (2015), 702-710.  doi: 10.1016/j.jngse.2015.05.039.
    [5] A. BaghalianS. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.  doi: 10.1016/j.ejor.2012.12.017.
    [6] J. Behnamian and S. M. T. F. Ghomi, Multi-objective fuzzy multiprocessor flowshop scheduling, Applied Soft Computing, 21 (2014), 139-148.  doi: 10.1016/j.asoc.2014.03.031.
    [7] D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathematical Programming, 98 (2003), 49-71.  doi: 10.1007/s10107-003-0396-4.
    [8] D. BertsimasD. Pachamanova and M. Sim, Robust linear optimization under general norms, Operations Research Letters, 32 (2004), 510-516.  doi: 10.1016/j.orl.2003.12.007.
    [9] J.-F. BérubéM. Gendreau and J.-Y. Potvin, An exact $\epsilon$-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits, European Journal of Operational Research, 194 (2009), 39-50.  doi: 10.1016/j.ejor.2007.12.014.
    [10] T. BoukherroubA. RuizA. Guinet and J. Fondrevelle, An integrated approach for sustainable supply chain planning, Computers & Operations Research, 54 (2015), 180-194.  doi: 10.1016/j.cor.2014.09.002.
    [11] A. ChaabaneA. Ramudhin and M. Paquet, Design of sustainable supply chains under the emission trading scheme, International Journal of Production Economics, 135 (2012), 37-49.  doi: 10.1016/j.ijpe.2010.10.025.
    [12] Z. Chen and S. Andresen, A multiobjective optimization model of production-sourcing for sustainable supply chain with consideration of social, environmental, and economic factors, Mathematical Problems in Engineering, (2014), Article ID 616107. doi: 10.1155/2014/616107.
    [13] A. CheraghalipourM. M. Paydar and M. Hajiaghaei-Keshteli, A bi-objective optimization for citrus closed-loop supply chain using Pareto-based algorithms, Applied Soft Computing, 69 (2018), 33-59.  doi: 10.1016/j.asoc.2018.04.022.
    [14] Z. DaiF. AqlanX. Zheng and K. Gao, A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints, Computers & Industrial Engineering, 119 (2018), 338-352.  doi: 10.1016/j.cie.2018.04.007.
    [15] K. DebA. PratapS. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.  doi: 10.1109/4235.996017.
    [16] K. DevikaA. Jafarian and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European Journal of Operational Research, 235 (2014), 594-615.  doi: 10.1016/j.ejor.2013.12.032.
    [17] A. DiabatA. Jabbarzadeh and A. Khosrojerdi, A perishable product supply chain network design problem with reliability and disruption considerations, International Journal of Production Economics, 212 (2019), 125-138.  doi: 10.1016/j.ijpe.2018.09.018.
    [18] S. GoldS. Seuring and P. Beske, Sustainable supply chain management and inter-organizational resources: A literature review, Corporate Social Responsibility and Environmental Management, 17 (2010), 230-245.  doi: 10.1002/csr.207.
    [19] A. Goli, E. B. Tirkolaee and G. W. Weber, A Perishable Product Sustainable Supply Chain Network Design Problem with Lead Time and Customer Satisfaction using a Hybrid Whale-Genetic Algorithm, In Logistics Operations and Management for Recycling and Reuse Springer, Berlin, Heidelberg, (2020), 99–124.
    [20] A. Goli, E. B. Tirkolaee and N. S. Aydin, Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors, IEEE Transactions on Fuzzy Systems, Central European Journal of Operations Research, 2021. doi: 10.1109/TFUZZ.2021.3053838.
    [21] K. GovindanA. JafarianR. Khodaverdi and K. Devika, Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, International Journal of Production Economics, 152 (2014), 9-28.  doi: 10.1016/j.ijpe.2013.12.028.
    [22] G. Guillén-Gosálbez and I. Grossmann, A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model, Computers & Chemical Engineering, 34 (2010), 42-58.  doi: 10.1016/j.compchemeng.2009.09.003.
    [23] A. Haddadsisakht and S. M. Ryan, Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax, International Journal of Production Economics, 195 (2018), 118-131.  doi: 10.1016/j.ijpe.2017.09.009.
    [24] J. HeydariP. Zaabi-Ahmadi and T.-M. Choi, Coordinating supply chains with stochastic demand by crashing lead times, Computers & Operations Research, 100 (2018), 394-403.  doi: 10.1016/j.cor.2016.10.009.
    [25] V. KayvanfarS. M. HusseiniM. S. Sajadieh and B. Karimi, A multi-echelon multi-product stochastic model to supply chain of small-and-medium enterprises in industrial clusters, Computers & Industrial Engineering, 115 (2018), 69-79.  doi: 10.1016/j.cie.2017.11.003.
    [26] M. Keshavarz GhorabaeeM. AmiriL. Olfat and S. A. Khatami Firouzabadi, Designing a multi-product multi-period supply chain network with reverse logistics and multiple objectives under uncertainty, Technological and Economic Development of Economy, 23 (2017), 520-548.  doi: 10.3846/20294913.2017.1312630.
    [27] S. KhalilpourazariA. MirzazadehG.-W. Weber and S. H. R. Pasandideh, A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 63-90.  doi: 10.1080/02331934.2019.1630625.
    [28] S. KhalilpourazariS. TeimooriA. MirzazadehS. H. R. Pasandideh and N. Ghanbar Tehrani, Robust Fuzzy chance constraint programming for multi-item EOQ model with random disruption and partial backordering under uncertainty, Journal of Industrial and Production Engineering, 36 (2019b), 276-285.  doi: 10.1080/21681015.2019.1646328.
    [29] S. KhalilpourazariB. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020a), 3037-3066.  doi: 10.1007/s00500-019-04080-6.
    [30] S. Khalilpourazari, S. Khalilpourazary, A. Ö. Çiftçioǧlu and G.-W. Weber, Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence, Journal of Intelligent Manufacturing, (2020), 1–27. doi: 10.1007/s10845-020-01648-0.
    [31] S. Khalilpourazari and H. H. Doulabi, Designing a hybrid reinforcement learning based algorithm with application in prediction of the COVID-19 pandemic in Quebec, Annals of Operations Research, (2021), 1–45. doi: 10.1007/s10479-020-03871-7.
    [32] D.-H. LeeM. Dong and W. Bian, The design of sustainable logistics network under uncertainty, International Journal of Production Economics, 15 (2010), 260-279.  doi: 10.1016/j.ijpe.2010.06.009.
    [33] Y. Li and W. Jia, Supply Chain Coordination with Considering Defective Quality Products Cheaply Processing Under Stochastic Demand Condition, Journal of Residuals Science & Technology, 13 (2016).
    [34] R. Lotfi, Z. Yadegari, S. H. Hosseini, A. H. Khameneh, E. B. Tirkolaee and G.-W. Weber, A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project, Journal of Industrial & Management Optimization, 2020. doi: 10.3934/jimo.2020158.
    [35] R. LotfiY. Z. MehrjerdiM. S. PishvaeeA. Sadeghieh and G.-W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numerical Algebra, Control & Optimization, 11 (2021), 221-253.  doi: 10.3934/naco.2020023.
    [36] A. Mardani, D. Kannan, R. E. Hooker, S. Ozkul, M. Alrasheedi and E. B. Tirkolaee, Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, Journal of Cleaner Production, 249 (2020), 119383. doi: 10.1016/j.jclepro.2019.119383.
    [37] E. ÖzceylanT. Paksoy and T. Bektaş, Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing, Transportation Research Part E: Logistics and Transportation Review, 61 (2014), 142-164.  doi: 10.1016/j.tre.2013.11.001.
    [38] S. Pal and G. S. Mahapatra, A manufacturing-oriented supply chain model for imperfect quality with inspection errors, stochastic demand under rework and shortages, Computers & Industrial Engineering, 106 (2017), 299-314.  doi: 10.1016/j.cie.2017.02.003.
    [39] M. Parsa, A. S. Nookabadi, Z. Atan and Y. Malekian, An optimal inventory policy for a multi-echelon closed-loop supply chain of postconsumer recycled content products, Operational Research, (2020), 1–52. doi: 10.1007/s12351-020-00604-3.
    [40] M. S. PishvaeeR. Z. Farahani and W. Dullaert, A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Computers & Operations Research, 37 (2010), 1100-1112.  doi: 10.1016/j.cor.2009.09.018.
    [41] M. S. PishvaeeM. Rabbani and S. A. Torabi, A robust optimization approach to closed-loop supply chain network design under uncertainty, Applied Mathematical Modelling, 35 (2011), 637-649.  doi: 10.1016/j.apm.2010.07.013.
    [42] M. S. PishvaeeS. A. Torabi and J. Razmi, Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty, Computers & Industrial Engineering, 62 (2012), 624-632.  doi: 10.1016/j.cie.2011.11.028.
    [43] M. S. PishvaeeJ. Razmi and S. A. Torabi, An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Transportation Research Part E: Logistics and Transportation Review, 67 (2014), 14-38.  doi: 10.1016/j.tre.2014.04.001.
    [44] M. Rabbani, N. Oladzad-Abbasabady and N. Akbarian-Saravi, Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms, Journal of Industrial & Management Optimization, 2021. doi: 10.3934/jimo.2021007.
    [45] M. RamezaniM. Bashiri and R. Tavakkoli-Moghaddam, A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level, Applied Mathematical Modelling, 37 (2013), 328-344.  doi: 10.1016/j.apm.2012.02.032.
    [46] S. RezapourR. Z. FarahaniB. FahimniaK. Govindan and Y. Mansouri, Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93 (2015), 251-272.  doi: 10.1016/j.jclepro.2014.12.095.
    [47] J. Sadeghi and S. T. A. Niaki, Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory model with trapezoidal fuzzy demand, Applied Soft Computing, 30 (2015), 567-576.  doi: 10.1016/j.asoc.2015.02.013.
    [48] A. S. SafaeiA. Roozbeh and M. M. Paydar, A robust optimization model for the design of a cardboard closed-loop supply chain, Journal of Cleaner Production, 166 (2017), 1154-1168.  doi: 10.1016/j.jclepro.2017.08.085.
    [49] H. Soleimani and G. Kannan, A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks, Applied Mathematical Modelling, 39 (2015), 3990-4012.  doi: 10.1016/j.apm.2014.12.016.
    [50] E. B. TirkolaeeJ. MahmoodkhaniM. R. Bourani and R. Tavakkoli-Moghaddam, A self-learning particle swarm optimization for robust multi-echelon capacitated location-allocation-inventory problem, Journal of Advanced Manufacturing Systems, 18 (2019), 677-694.  doi: 10.1142/S0219686719500355.
    [51] E. B. Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.-W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, Journal of Cleaner Production, 276 (2020), 122927. doi: 10.1016/j.jclepro.2020.122927.
    [52] E. B. Tirkolaee, P. Abbasian and G.-W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Science of the Total Environment, 756 (2021), 143607. doi: 10.1016/j.scitotenv.2020.143607.
    [53] S.-C. Tseng and S.-W. Hung, A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, Journal of Environmental Management, 133 (2014), 315-322.  doi: 10.1016/j.jenvman.2013.11.023.
    [54] F. WangX. Lai and N. Shi, A multi-objective optimization for green supply chain network design, Decision Support Systems, 51 (2011), 262-269.  doi: 10.1016/j.dss.2010.11.020.
    [55] Z. WuC. K. KwongR. Aydin and J. Tang, A cooperative negotiation embedded NSGA-II for solving an integrated product family and supply chain design problem with remanufacturing consideration, Applied Soft Computing, 57 (2017), 19-34.  doi: 10.1016/j.asoc.2017.03.021.
    [56] M. Yavari and M. Geraeli, Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods, Journal of Cleaner Production, 226 (2019), 282-305.  doi: 10.1016/j.jclepro.2019.03.279.
    [57] F. YilmazH. Ö. Bakan and G.-W. Weber, Strong-order conditions of Runge-Kutta method for stochastic optimal control problems, Applied Numerical Mathematics, 157 (2020), 470-489.  doi: 10.1016/j.apnum.2020.07.002.
    [58] H. YuW. D. Solvang and C. Chen, A green supply chain network design model for enhancing competitiveness and sustainability of companies in high north arctic regions, International Journal of Energy and Environment, 5 (2014), 403-418. 
    [59] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.
    [60] B. Zahiri and M. S. Pishvaee, Blood supply chain network design considering blood group compatibility under uncertainty, International Journal of Production Research, 55 (2017), 2013-2033.  doi: 10.1080/00207543.2016.1262563.
    [61] Y. ZareMehrjerdi and R. Lotfi, Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework, International Journal of Supply and Operations Management, 6 (2019), 360-388. 
    [62] Q. ZhangN. ShahJ. WassickR. Helling and P. Van Egerschot, Sustainable supply chain optimisation: An industrial case study, Computers & Industrial Engineering, 74 (2014), 68-83.  doi: 10.1016/j.cie.2014.05.002.
  • 加载中

Figures(7)

Tables(13)

SHARE

Article Metrics

HTML views(1448) PDF downloads(764) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return