[1]
|
S. S. Ali, R. Kaur, F. Ersöz, B. Altaf, A. Basu and G.-W. Weber, Measuring carbon performance for sustainable green supply chain practices: A developing country scenario, Central European Journal of Operations Research, 28 (2020), 1389-1416.
doi: 10.1007/s10100-020-00673-x.
|
[2]
|
M. Alinaghian, E. B. Tirkolaee, Z. K. Dezaki, S. R. Hejazi and W. Ding, An augmented Tabu search algorithm for the green inventory-routing problem with time windows, Swarm and Evolutionary Computation, 60 (2021), 100802.
doi: 10.1016/j.swevo.2020.100802.
|
[3]
|
S. H. Amin and G. Zhang, Closed-loop supply chain network configuration by a multi-objective mathematical model, International Journal of Business Performance and Supply Chain Modelling, 6 (2014), 1-15.
doi: 10.1504/IJBPSCM.2014.058890.
|
[4]
|
A. Azadeh, Z. Raoofi and M. Zarrin, A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach, Journal of Natural Gas Science and Engineering, 26 (2015), 702-710.
doi: 10.1016/j.jngse.2015.05.039.
|
[5]
|
A. Baghalian, S. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.
doi: 10.1016/j.ejor.2012.12.017.
|
[6]
|
J. Behnamian and S. M. T. F. Ghomi, Multi-objective fuzzy multiprocessor flowshop scheduling, Applied Soft Computing, 21 (2014), 139-148.
doi: 10.1016/j.asoc.2014.03.031.
|
[7]
|
D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathematical Programming, 98 (2003), 49-71.
doi: 10.1007/s10107-003-0396-4.
|
[8]
|
D. Bertsimas, D. Pachamanova and M. Sim, Robust linear optimization under general norms, Operations Research Letters, 32 (2004), 510-516.
doi: 10.1016/j.orl.2003.12.007.
|
[9]
|
J.-F. Bérubé, M. Gendreau and J.-Y. Potvin, An exact $\epsilon$-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits, European Journal of Operational Research, 194 (2009), 39-50.
doi: 10.1016/j.ejor.2007.12.014.
|
[10]
|
T. Boukherroub, A. Ruiz, A. Guinet and J. Fondrevelle, An integrated approach for sustainable supply chain planning, Computers & Operations Research, 54 (2015), 180-194.
doi: 10.1016/j.cor.2014.09.002.
|
[11]
|
A. Chaabane, A. Ramudhin and M. Paquet, Design of sustainable supply chains under the emission trading scheme, International Journal of Production Economics, 135 (2012), 37-49.
doi: 10.1016/j.ijpe.2010.10.025.
|
[12]
|
Z. Chen and S. Andresen, A multiobjective optimization model of production-sourcing for sustainable supply chain with consideration of social, environmental, and economic factors, Mathematical Problems in Engineering, (2014), Article ID 616107.
doi: 10.1155/2014/616107.
|
[13]
|
A. Cheraghalipour, M. M. Paydar and M. Hajiaghaei-Keshteli, A bi-objective optimization for citrus closed-loop supply chain using Pareto-based algorithms, Applied Soft Computing, 69 (2018), 33-59.
doi: 10.1016/j.asoc.2018.04.022.
|
[14]
|
Z. Dai, F. Aqlan, X. Zheng and K. Gao, A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints, Computers & Industrial Engineering, 119 (2018), 338-352.
doi: 10.1016/j.cie.2018.04.007.
|
[15]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[16]
|
K. Devika, A. Jafarian and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European Journal of Operational Research, 235 (2014), 594-615.
doi: 10.1016/j.ejor.2013.12.032.
|
[17]
|
A. Diabat, A. Jabbarzadeh and A. Khosrojerdi, A perishable product supply chain network design problem with reliability and disruption considerations, International Journal of Production Economics, 212 (2019), 125-138.
doi: 10.1016/j.ijpe.2018.09.018.
|
[18]
|
S. Gold, S. Seuring and P. Beske, Sustainable supply chain management and inter-organizational resources: A literature review, Corporate Social Responsibility and Environmental Management, 17 (2010), 230-245.
doi: 10.1002/csr.207.
|
[19]
|
A. Goli, E. B. Tirkolaee and G. W. Weber, A Perishable Product Sustainable Supply Chain Network Design Problem with Lead Time and Customer Satisfaction using a Hybrid Whale-Genetic Algorithm, In Logistics Operations and Management for Recycling and Reuse Springer, Berlin, Heidelberg, (2020), 99–124.
|
[20]
|
A. Goli, E. B. Tirkolaee and N. S. Aydin, Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors, IEEE Transactions on Fuzzy Systems, Central European Journal of Operations Research, 2021.
doi: 10.1109/TFUZZ.2021.3053838.
|
[21]
|
K. Govindan, A. Jafarian, R. Khodaverdi and K. Devika, Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, International Journal of Production Economics, 152 (2014), 9-28.
doi: 10.1016/j.ijpe.2013.12.028.
|
[22]
|
G. Guillén-Gosálbez and I. Grossmann, A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model, Computers & Chemical Engineering, 34 (2010), 42-58.
doi: 10.1016/j.compchemeng.2009.09.003.
|
[23]
|
A. Haddadsisakht and S. M. Ryan, Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax, International Journal of Production Economics, 195 (2018), 118-131.
doi: 10.1016/j.ijpe.2017.09.009.
|
[24]
|
J. Heydari, P. Zaabi-Ahmadi and T.-M. Choi, Coordinating supply chains with stochastic demand by crashing lead times, Computers & Operations Research, 100 (2018), 394-403.
doi: 10.1016/j.cor.2016.10.009.
|
[25]
|
V. Kayvanfar, S. M. Husseini, M. S. Sajadieh and B. Karimi, A multi-echelon multi-product stochastic model to supply chain of small-and-medium enterprises in industrial clusters, Computers & Industrial Engineering, 115 (2018), 69-79.
doi: 10.1016/j.cie.2017.11.003.
|
[26]
|
M. Keshavarz Ghorabaee, M. Amiri, L. Olfat and S. A. Khatami Firouzabadi, Designing a multi-product multi-period supply chain network with reverse logistics and multiple objectives under uncertainty, Technological and Economic Development of Economy, 23 (2017), 520-548.
doi: 10.3846/20294913.2017.1312630.
|
[27]
|
S. Khalilpourazari, A. Mirzazadeh, G.-W. Weber and S. H. R. Pasandideh, A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 63-90.
doi: 10.1080/02331934.2019.1630625.
|
[28]
|
S. Khalilpourazari, S. Teimoori, A. Mirzazadeh, S. H. R. Pasandideh and N. Ghanbar Tehrani, Robust Fuzzy chance constraint programming for multi-item EOQ model with random disruption and partial backordering under uncertainty, Journal of Industrial and Production Engineering, 36 (2019b), 276-285.
doi: 10.1080/21681015.2019.1646328.
|
[29]
|
S. Khalilpourazari, B. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020a), 3037-3066.
doi: 10.1007/s00500-019-04080-6.
|
[30]
|
S. Khalilpourazari, S. Khalilpourazary, A. Ö. Çiftçioǧlu and G.-W. Weber, Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence, Journal of Intelligent Manufacturing, (2020), 1–27.
doi: 10.1007/s10845-020-01648-0.
|
[31]
|
S. Khalilpourazari and H. H. Doulabi, Designing a hybrid reinforcement learning based algorithm with application in prediction of the COVID-19 pandemic in Quebec, Annals of Operations Research, (2021), 1–45.
doi: 10.1007/s10479-020-03871-7.
|
[32]
|
D.-H. Lee, M. Dong and W. Bian, The design of sustainable logistics network under uncertainty, International Journal of Production Economics, 15 (2010), 260-279.
doi: 10.1016/j.ijpe.2010.06.009.
|
[33]
|
Y. Li and W. Jia, Supply Chain Coordination with Considering Defective Quality Products Cheaply Processing Under Stochastic Demand Condition, Journal of Residuals Science & Technology, 13 (2016).
|
[34]
|
R. Lotfi, Z. Yadegari, S. H. Hosseini, A. H. Khameneh, E. B. Tirkolaee and G.-W. Weber, A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project, Journal of Industrial & Management Optimization, 2020.
doi: 10.3934/jimo.2020158.
|
[35]
|
R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh and G.-W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numerical Algebra, Control & Optimization, 11 (2021), 221-253.
doi: 10.3934/naco.2020023.
|
[36]
|
A. Mardani, D. Kannan, R. E. Hooker, S. Ozkul, M. Alrasheedi and E. B. Tirkolaee, Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, Journal of Cleaner Production, 249 (2020), 119383.
doi: 10.1016/j.jclepro.2019.119383.
|
[37]
|
E. Özceylan, T. Paksoy and T. Bektaş, Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing, Transportation Research Part E: Logistics and Transportation Review, 61 (2014), 142-164.
doi: 10.1016/j.tre.2013.11.001.
|
[38]
|
S. Pal and G. S. Mahapatra, A manufacturing-oriented supply chain model for imperfect quality with inspection errors, stochastic demand under rework and shortages, Computers & Industrial Engineering, 106 (2017), 299-314.
doi: 10.1016/j.cie.2017.02.003.
|
[39]
|
M. Parsa, A. S. Nookabadi, Z. Atan and Y. Malekian, An optimal inventory policy for a multi-echelon closed-loop supply chain of postconsumer recycled content products, Operational Research, (2020), 1–52.
doi: 10.1007/s12351-020-00604-3.
|
[40]
|
M. S. Pishvaee, R. Z. Farahani and W. Dullaert, A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Computers & Operations Research, 37 (2010), 1100-1112.
doi: 10.1016/j.cor.2009.09.018.
|
[41]
|
M. S. Pishvaee, M. Rabbani and S. A. Torabi, A robust optimization approach to closed-loop supply chain network design under uncertainty, Applied Mathematical Modelling, 35 (2011), 637-649.
doi: 10.1016/j.apm.2010.07.013.
|
[42]
|
M. S. Pishvaee, S. A. Torabi and J. Razmi, Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty, Computers & Industrial Engineering, 62 (2012), 624-632.
doi: 10.1016/j.cie.2011.11.028.
|
[43]
|
M. S. Pishvaee, J. Razmi and S. A. Torabi, An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Transportation Research Part E: Logistics and Transportation Review, 67 (2014), 14-38.
doi: 10.1016/j.tre.2014.04.001.
|
[44]
|
M. Rabbani, N. Oladzad-Abbasabady and N. Akbarian-Saravi, Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms, Journal of Industrial & Management Optimization, 2021.
doi: 10.3934/jimo.2021007.
|
[45]
|
M. Ramezani, M. Bashiri and R. Tavakkoli-Moghaddam, A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level, Applied Mathematical Modelling, 37 (2013), 328-344.
doi: 10.1016/j.apm.2012.02.032.
|
[46]
|
S. Rezapour, R. Z. Farahani, B. Fahimnia, K. Govindan and Y. Mansouri, Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93 (2015), 251-272.
doi: 10.1016/j.jclepro.2014.12.095.
|
[47]
|
J. Sadeghi and S. T. A. Niaki, Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory model with trapezoidal fuzzy demand, Applied Soft Computing, 30 (2015), 567-576.
doi: 10.1016/j.asoc.2015.02.013.
|
[48]
|
A. S. Safaei, A. Roozbeh and M. M. Paydar, A robust optimization model for the design of a cardboard closed-loop supply chain, Journal of Cleaner Production, 166 (2017), 1154-1168.
doi: 10.1016/j.jclepro.2017.08.085.
|
[49]
|
H. Soleimani and G. Kannan, A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks, Applied Mathematical Modelling, 39 (2015), 3990-4012.
doi: 10.1016/j.apm.2014.12.016.
|
[50]
|
E. B. Tirkolaee, J. Mahmoodkhani, M. R. Bourani and R. Tavakkoli-Moghaddam, A self-learning particle swarm optimization for robust multi-echelon capacitated location-allocation-inventory problem, Journal of Advanced Manufacturing Systems, 18 (2019), 677-694.
doi: 10.1142/S0219686719500355.
|
[51]
|
E. B. Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.-W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, Journal of Cleaner Production, 276 (2020), 122927.
doi: 10.1016/j.jclepro.2020.122927.
|
[52]
|
E. B. Tirkolaee, P. Abbasian and G.-W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Science of the Total Environment, 756 (2021), 143607.
doi: 10.1016/j.scitotenv.2020.143607.
|
[53]
|
S.-C. Tseng and S.-W. Hung, A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, Journal of Environmental Management, 133 (2014), 315-322.
doi: 10.1016/j.jenvman.2013.11.023.
|
[54]
|
F. Wang, X. Lai and N. Shi, A multi-objective optimization for green supply chain network design, Decision Support Systems, 51 (2011), 262-269.
doi: 10.1016/j.dss.2010.11.020.
|
[55]
|
Z. Wu, C. K. Kwong, R. Aydin and J. Tang, A cooperative negotiation embedded NSGA-II for solving an integrated product family and supply chain design problem with remanufacturing consideration, Applied Soft Computing, 57 (2017), 19-34.
doi: 10.1016/j.asoc.2017.03.021.
|
[56]
|
M. Yavari and M. Geraeli, Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods, Journal of Cleaner Production, 226 (2019), 282-305.
doi: 10.1016/j.jclepro.2019.03.279.
|
[57]
|
F. Yilmaz, H. Ö. Bakan and G.-W. Weber, Strong-order conditions of Runge-Kutta method for stochastic optimal control problems, Applied Numerical Mathematics, 157 (2020), 470-489.
doi: 10.1016/j.apnum.2020.07.002.
|
[58]
|
H. Yu, W. D. Solvang and C. Chen, A green supply chain network design model for enhancing competitiveness and sustainability of companies in high north arctic regions, International Journal of Energy and Environment, 5 (2014), 403-418.
|
[59]
|
L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.
|
[60]
|
B. Zahiri and M. S. Pishvaee, Blood supply chain network design considering blood group compatibility under uncertainty, International Journal of Production Research, 55 (2017), 2013-2033.
doi: 10.1080/00207543.2016.1262563.
|
[61]
|
Y. ZareMehrjerdi and R. Lotfi, Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework, International Journal of Supply and Operations Management, 6 (2019), 360-388.
|
[62]
|
Q. Zhang, N. Shah, J. Wassick, R. Helling and P. Van Egerschot, Sustainable supply chain optimisation: An industrial case study, Computers & Industrial Engineering, 74 (2014), 68-83.
doi: 10.1016/j.cie.2014.05.002.
|