\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Performance evaluation of the Chinese high-tech industry: A two-stage DEA approach with feedback and shared resource

  • * Corresponding author: Linlin Zhao

    * Corresponding author: Linlin Zhao 
Abstract Full Text(HTML) Figure(6) / Table(3) Related Papers Cited by
  • The operational process of high-tech industry can be separated into a research and development stage (RDS) and a commercialization stage (CS). Within this, the research employees are shared by both stages, and part of the economic output of the CS becomes a feedback factor and continuously flows back to the RDS. Using this framework, this study establishes cooperative and non-cooperative two-stage data envelopment analysis (DEA) models to explore the efficiencies of regional high-tech industries in China. The proposed approach can calculate the overall efficiency and stage efficiencies simultaneously. Based on empirical data of high-tech industries in 29 regions of China from 2012 to 2016, it is concluded that (1) a harmony exists between the RDS and the CS in the cooperative case, while a disharmony happens between the RDS and CS in the non-cooperative case; (2) there exist distinct geographic characteristics regarding the stage inefficiencies of these regional high-tech industries.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The operational process of Chinese high-tech industry

    Figure 2.  Two-stage process of Chinese high-tech industry

    Figure 3.  The efficiencies in the cooperative case (2012-2016)

    Figure 4.  The average stage efficiencies when the RDS as the leader (2012-2016)

    Figure 5.  The average stage efficiencies when the CS as the leader (2012-2016)

    Figure 6.  The annual average stage efficiencies in the non-cooperative case (2012-2016)

    Table 1.  Descriptive statistics for the data set (2012-2016)

    Variables Years 2012 2013 2014 2015 2016
    RDS input Government funds Mean 501.39 573.54 615.54 724.66 731.88
    (million RMB Yuan) Std.dev. 644.98 690.40 790.16 875.93 874.37
    Shared input Full-time equivalent Mean 21487.59 23104.03 24183.14 25065.24 25186.93
    (man-year) Std.dev. 43155.81 41366.88 41416.91 41394.00 41679.17
    Feedback variable Self-raised fund by enterprises Mean 5359.29 6244.10 7090.63 8168.44 9171.59
    (million RMB Yuan) Std.dev. 10841.96 12328.35 13644.27 15525.56 17393.22
    Intermediate measure Number of patents in force Mean 3990.69 4784.72 6225.90 8321.66 10912.10
    (piece) Std.dev. 11329.12 13060.45 16498.47 23087.70 30261.18
    CS inputs Expenditure on new products development Mean 7338.06 8371.73 9535.57 10442.85 12266.17
    (million RMB Yuan) Std.dev. 13777.38 15375.75 18288.53 20590.16 25004.15
    Expenditure for technical renovation Mean 1272.00 1649.92 1291.33 1382.23 1557.09
    (million RMB Yuan) Std.dev. 2279.31 2702.51 1849.80 2006.38 2568.56
    CS outputs Sales revenue of new products Mean 88167.55 107676.75 122389.82 142785.98 165183.75
    (million RMB Yuan) Std.dev. 185038.44 207162.49 231072.10 261637.21 321195.75
    Main business income Mean 349095.52 399952.41 438946.90 482269.66 529854.14
    (million RMB Yuan) Std.dev. 598955.60 656947.81 703448.92 770416.46 853237.12
     | Show Table
    DownLoad: CSV

    Table 2.  The average efficiencies of 29 regions in China (2012-2016)

    Area Cooperative model Non-cooperative model Traditional model
    Overall RDS CS RDS as leader CS as leader
    RDS CS RDS CS
    Eastern area Beijing 0.957 1.000 0.913 1.000 0.896 0.805 1.000 0.887
    Tianjin 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
    Hebei 0.693 0.630 0.756 0.960 0.356 0.336 1.000 0.369
    Shanghai 0.945 1.000 0.890 1.000 0.860 0.814 1.000 0.840
    Jiangsu 0.830 1.000 0.661 1.000 0.681 0.546 1.000 0.848
    Zhejiang 0.709 0.559 0.860 0.977 0.341 0.390 1.000 0.462
    Fujian 0.714 0.613 0.815 0.977 0.417 0.383 1.000 0.913
    Shandong 0.744 1.000 0.489 1.000 0.497 0.410 1.000 0.209
    Guangdong 0.905 1.000 0.811 1.000 0.776 0.686 1.000 0.853
    Hainan 0.751 0.999 0.502 1.000 0.502 0.289 1.000 0.850
    Central area Shanxi 0.852 0.995 0.710 0.995 0.709 0.561 1.000 0.355
    Anhui 0.775 1.000 0.550 1.000 0.550 0.436 1.000 0.475
    Jiangxi 0.804 0.870 0.738 0.946 0.654 0.388 1.000 0.552
    Henan 0.832 0.743 0.922 0.655 0.923 0.571 1.000 0.775
    Hubei 0.725 0.546 0.904 1.000 0.372 0.402 1.000 0.485
    Hunan 0.772 1.000 0.544 0.919 0.560 0.426 1.000 0.968
    Northeastern Liaoning 0.762 1.000 0.524 1.000 0.525 0.421 1.000 0.328
    area Jilin 0.906 1.000 0.812 1.000 0.812 0.700 1.000 0.556
    Heilongjiang 0.637 0.346 0.929 0.873 0.166 0.237 1.000 0.682
    Western area Inner Mongolia 0.880 0.709 0.849 0.995 0.709 0.561 1.000 0.957
    Guangxi 0.974 1.000 0.947 1.000 0.947 0.914 1.000 0.225
    Chongqing 0.978 0.991 0.964 0.930 0.977 0.874 1.000 1.000
    Sichuan 0.807 1.000 0.614 1.000 0.615 0.518 1.000 0.575
    Guizhou 0.658 0.700 0.617 0.995 0.259 0.196 1.000 0.250
    Yunnan 0.768 1.000 0.536 1.000 0.537 0.381 1.000 0.326
    Shaanxi 0.645 0.314 0.976 0.932 0.171 0.244 1.000 0.216
    Qinghai 0.735 0.768 0.701 1.000 0.431 0.388 1.000 0.426
    Ningxia 0.657 0.549 0.764 0.819 0.356 0.301 1.000 0.330
    Xinjiang 0.778 0.999 0.558 1.000 0.558 0.455 1.000 0.497
    China Mean 0.800 0.839 0.754 0.965 0.592 0.505 1.000 0.593
     | Show Table
    DownLoad: CSV

    Table 3.  Wilcoxon test results of the efficiency differences between two stages*

    Efficiency comparisons Cooperative model RDS as the leader CS as the leader
    Statistic z (P-value) Statistic z (P-value) Statistic z (P-value)
    RDS efficiency VS. -1.389 -4.441 -4.462
    CS efficiency (0.165)INSIG (0.000)SIG (0.000)SIG
    * The significance level is 5%.
     | Show Table
    DownLoad: CSV
  • [1] A. Amirteimoori, A DEA two-stage decision processes with shared resources, Cent. Eur. J. Oper. Res., 21 (2013), 141-151.  doi: 10.1007/s10100-011-0218-3.
    [2] Q. AnF. MengB. XiongZ. Wang and X. Chen, Assessing the relative efficiency of Chinese high-tech industries: A dynamic network data envelopment analysis approach, Ann. Oper. Res., 290 (2020), 707-729.  doi: 10.1007/s10479-018-2883-2.
    [3] Q. AnZ. WangA. EmrouznejadQ. Zhu and X. Chen, Efficiency evaluation of parallel interdependent processes systems: An application to Chinese 985 Project universities, Int. J. Prod. Res., 57 (2019), 5387-5399.  doi: 10.1080/00207543.2018.1521531.
    [4] Q. AnM. YangJ. ChuJ. Wu and Q. Zhu, Efficiency evaluation of an interactive system by data envelopment analysis approach, Comput. Ind. Eng., 103 (2017), 17-25.  doi: 10.1016/j.cie.2016.10.010.
    [5] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978) 429–444. doi: 10.1016/0377-2217(78)90138-8.
    [6] C.-J. ChenH.-L. Wu and B.-W. Lin, Evaluating the development of high-tech industries: Taiwan's science park, Technol. Forecast. Soc. Change., 73 (2006), 452-465.  doi: 10.1016/j.techfore.2005.04.003.
    [7] K. Chen and J. Guan, Measuring the efficiency of China's regional innovation systems: Application of network data envelopment analysis (DEA), Reg. Stud., 46 (2012), 355-377.  doi: 10.1080/00343404.2010.497479.
    [8] K. Chen and M. Kou, Staged efficiency and its determinants of regional innovation systems: A two-step analytical procedure, Ann. Reg. Sci., 52 (2014), 627-657.  doi: 10.1007/s00168-014-0604-6.
    [9] X. ChenZ. Liu and Q. Zhu, Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain, Technovation, 74-75 (2018), 42-53.  doi: 10.1016/j.technovation.2018.02.009.
    [10] Y. ChenW. D. CookN. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA, Eur. J. Oper. Res., 196 (2009), 1170-1176.  doi: 10.1016/j.ejor.2008.05.011.
    [11] Y. ChenJ. DuH. D. Sherman and J. Zhu, DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.  doi: 10.1016/j.ejor.2010.03.031.
    [12] W. D. Cook and M. Hababou, Sales performance measurement in bank branches, Omega, 29 (2001), 229-307.  doi: 10.1016/S0305-0483(01)00025-1.
    [13] W. D. Cook and L. M. Seiford, Towards a general non-parametric model of corporate performance, Omega, 192 (2009), 1-17. 
    [14] Q. Deng, S. Zhou and F. Peng, Measuring green innovation efficiency for China's high-tech manufacturing industry: A network DEA approach, Math. Probl. Eng., (2020). doi: 10.1155/2020/8902416.
    [15] R. Färe and S. Grosskopf, Productivity and intermediate products: A frontier approach, Econ. Lett., 50 (1996), 65-70.  doi: 10.1016/0165-1765(95)00729-6.
    [16] Z. GrilichesPatent Statistics as Economic Indicators: A Survey, University of Chicago Press, 1998.  doi: 10.3386/w3301.
    [17] J. Guan and K. Chen, Measuring the innovation production process: A cross-region empirical study of China's high-tech innovations, Technovation, 30 (2010), 348-358.  doi: 10.1016/j.technovation.2010.02.001.
    [18] J. Guan and K. Chen, Modeling the relative efficiency of national innovation systems, Res. Poli., 41 (2012), 102-115.  doi: 10.1016/j.respol.2011.07.001.
    [19] J. C. GuanR. C. M. YamC. K. Mok and N. Ma, A study of the relationship between competitiveness and technological innovation capability based on DEA models, Eur. J. Oper. Res., 170 (2006), 971-986.  doi: 10.1016/j.ejor.2004.07.054.
    [20] C. Guo and J. Zhu, Non-cooperative two-stage network DEA model: Linear vs. parametric linear, Eur. J. Oper. Res., 258 (2017), 398-400.  doi: 10.1016/j.ejor.2016.11.039.
    [21] G. E. HalkosN. G. Tzeremes and S. A. Kourtzidis, A unified classification of two-stage DEA models, Surveys in Operations Research and Management Science, 19 (2014), 1-16.  doi: 10.1016/j.sorms.2013.10.001.
    [22] C. HanS. R. ThomasM. YangP. Ieromonachou and H. Zhang, Evaluating R & D investment efficiency in China's high-tech industry, The Journal of High Technology Management Research, 28 (2017), 93-109.  doi: 10.1016/j.hitech.2017.04.007.
    [23] H. J. G. M. Hollanders and F. Celikel-Esser, Measuring Innovation Efficiency, European Commission, 2007.
    [24] Z. Hu, S. Yan, X. Li, L. Yao and Z. Luo, Evaluating the oil production and wastewater treatment efficiency by an extended two-stage network structure model with feedback variables, J. Environ. Manage., 251 (2019), 109578. doi: 10.1016/j.jenvman.2019.109578.
    [25] C. Kao, Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.  doi: 10.1016/j.ejor.2014.02.039.
    [26] C. Kao and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, Eur. J. Oper. Res., 185 (2008), 418-429.  doi: 10.1016/j.ejor.2006.11.041.
    [27] C. Kao and S. N. Hwang, Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.  doi: 10.1016/j.dss.2009.06.002.
    [28] J. LeeC. Kim and G. Choi, Exploring data envelopment analysis for measuring collaborated innovation efficiency of small and medium-sized enterprises in Korea, Eur. J. Oper. Res., 278 (2019), 533-545.  doi: 10.1016/j.ejor.2018.08.044.
    [29] C. Li, M. Li, L. Zhang, T. Li, H. Ouyang and S. Na, Has the high-tech industry along the belt and road in China achieved green growth with technological innovation efficiency and environmental sustainability?, Int. J. Environ. Res. Public Health, 16 (2019), 3117. doi: 10.3390/ijerph16173117.
    [30] H. LiH. HeJ. Shan and J. Cai, Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis, Socio-Econ. Plan. Sci., 66 (2019), 136-148.  doi: 10.1016/j.seps.2018.07.007.
    [31] W. LiZ. LiL. Liang and W. D. Cook, Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China, Socio-Econ. Plan. Sci., 60 (2017), 77-86.  doi: 10.1016/j.seps.2017.03.002.
    [32] Y. LiY. ChenL. Liang and J. Xie, DEA models for extended two-stage network structures, Omega, 40 (2012), 611-618.  doi: 10.1016/j.omega.2011.11.007.
    [33] L. LiangW. D. Cook and J. Zhu, DEA models for two-stage processes: Game approach and efficiency decomposition, Nav. Res. Log., 55 (2008), 643-653.  doi: 10.1002/nav.20308.
    [34] L. LiangF. FengW. D. Cook and J. Zhu, DEA models for supply chain efficiency evaluation, Ann. Oper. Res., 145 (2006), 35-49.  doi: 10.1007/s10479-006-0026-7.
    [35] L. LiangZ.-Q. LiW. D. Cook and J. Zhu, Data envelopment analysis efficiency in two-stage networks with feedback, IIE. Trans., 43 (2011), 309-322.  doi: 10.1080/0740817X.2010.509307.
    [36] S. Lin, R. Lin, J. Sun, F. Wang and W. Wu, Dynamically evaluating technological innovation efficiency of high-tech industry in China: Provincial, regional and industrial perspective, Socio-Econ. Plan. Sci., (2021), 100939. doi: 10.1016/j.seps.2020.100939.
    [37] Z. LiuX. ChenJ. Chu and Q. Zhu, Industrial development environment and innovation efficiency of high-tech industry: Analysis based on the framework of innovation systems, Technol. Anal. Strateg. Manage., 30 (2018), 434-446.  doi: 10.1080/09537325.2017.1337092.
    [38] W. Nasierowski and F. J. Arcelus, On the efficiency of national innovation systems, Socio-Econ. Plan. Sci., 37 (2003), 215-234.  doi: 10.1016/S0038-0121(02)00046-0.
    [39] L. M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks, Manage. Sci., 45 (1999), 1270-1288. doi: 10.1287/mnsc.45.9.1270.
    [40] Q. Shen, Measuring the R & D Performance of High-Tech Manufacturing Sectors in China: A Data Envelopment Analysis Application, J. Comput. Theor. Nanosci., 13 (2016), 7773-7778.  doi: 10.1166/jctn.2016.5777.
    [41] X. Shi, Environmental efficiency analysis based on relational two-stage DEA model, RAIRO-Oper. Res., 50 (2016), 965-977.  doi: 10.1051/ro/2015059.
    [42] K. Tone and M. Tsutsui, Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.  doi: 10.1016/j.omega.2013.04.002.
    [43] F.-M. TsengY.-J. Chiu and J.-S. Chen, Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies, Omega, 37 (2009), 686-697.  doi: 10.1016/j.omega.2007.07.004.
    [44] C. H. WangR. D. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213. 
    [45] Q. WangY. HangL. Sun and Z. Zhao, Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach, Technol. Forecast. Soc. Change., 112 (2016), 254-261.  doi: 10.1016/j.techfore.2016.04.019.
    [46] Y. Wang, J.-F. Pan, R.-M. Pei, B.-W. Yi and G.-L. Yang, Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach, Socio-Econ. Plan. Sci., 71 (2020), 100810. doi: 10.1016/j.seps.2020.100810.
    [47] H. WuK. LvL. Liang and H. Hu, Measuring performance of sustainable manufacturing with recyclable wastes: A case from China's iron and steel industry, Omega, 66 (2017), 38-47.  doi: 10.1016/j.omega.2016.01.009.
    [48] J. WuQ. ZhuJ. ChuH. Liu and L. Liang, Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach, Transp. Res. D. Transp. Environ., 48 (2016), 460-472.  doi: 10.1016/j.trd.2015.08.001.
    [49] J. WuQ. ZhuX. JiJ. Chu and L. Liang, Two-stage network processes with shared resources and resources recovered from undesirable outputs, Eur. J. Oper. Res., 251 (2016), 182-197.  doi: 10.1016/j.ejor.2015.10.049.
    [50] A. YuY. ShiJ. You and J. Zhu, Innovation performance evaluation for high-tech companies using a dynamic network data envelopment analysis approach, Eur. J. Oper. Res., 292 (2021), 199-212.  doi: 10.1016/j.ejor.2020.10.011.
    [51] Y. Zha and L. Liang, Two-stage cooperation model with input freely distributed among the stages, Eur. J. Oper. Res., 205 (2010), 332-338.  doi: 10.1016/j.ejor.2010.01.010.
    [52] B. ZhangY. Luo and Y.-H. Chiu, Efficiency evaluation of China's high-tech industry with a multi-activity network data envelopment analysis approach, Socio-Econ. Plan. Sci., 66 (2019), 2-9.  doi: 10.1016/j.seps.2018.07.013.
    [53] C. Zhang and Y. Lin, Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China, Energy Policy, 49 (2012), 488-498.  doi: 10.1016/j.enpol.2012.06.048.
    [54] L. ZhaoY. ZhaY. Zhuang and L. Liang, Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions, Eur. J. Oper. Res., 275 (2019), 1083-1095.  doi: 10.1016/j.ejor.2018.12.004.
  • 加载中

Figures(6)

Tables(3)

SHARE

Article Metrics

HTML views(1559) PDF downloads(735) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return