
-
Previous Article
A best possible algorithm for an online scheduling problem with position-based learning effect
- JIMO Home
- This Issue
-
Next Article
High-dimensional linear regression with hard thresholding regularization: Theory and algorithm
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Performance evaluation of the Chinese high-tech industry: A two-stage DEA approach with feedback and shared resource
1. | School of Management, University of Science and Technology of China, Hefei, Anhui Province 230026, China |
2. | School of Business, Nanjing Audit University, Nanjing, Jiangsu Province 211815, China |
3. | Huishang Futures, Hefei, Anhui Province 340100, China |
4. | International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui Province 230026, China |
The operational process of high-tech industry can be separated into a research and development stage (RDS) and a commercialization stage (CS). Within this, the research employees are shared by both stages, and part of the economic output of the CS becomes a feedback factor and continuously flows back to the RDS. Using this framework, this study establishes cooperative and non-cooperative two-stage data envelopment analysis (DEA) models to explore the efficiencies of regional high-tech industries in China. The proposed approach can calculate the overall efficiency and stage efficiencies simultaneously. Based on empirical data of high-tech industries in 29 regions of China from 2012 to 2016, it is concluded that (1) a harmony exists between the RDS and the CS in the cooperative case, while a disharmony happens between the RDS and CS in the non-cooperative case; (2) there exist distinct geographic characteristics regarding the stage inefficiencies of these regional high-tech industries.
References:
[1] |
A. Amirteimoori,
A DEA two-stage decision processes with shared resources, Cent. Eur. J. Oper. Res., 21 (2013), 141-151.
doi: 10.1007/s10100-011-0218-3. |
[2] |
Q. An, F. Meng, B. Xiong, Z. Wang and X. Chen,
Assessing the relative efficiency of Chinese high-tech industries: A dynamic network data envelopment analysis approach, Ann. Oper. Res., 290 (2020), 707-729.
doi: 10.1007/s10479-018-2883-2. |
[3] |
Q. An, Z. Wang, A. Emrouznejad, Q. Zhu and X. Chen,
Efficiency evaluation of parallel interdependent processes systems: An application to Chinese 985 Project universities, Int. J. Prod. Res., 57 (2019), 5387-5399.
doi: 10.1080/00207543.2018.1521531. |
[4] |
Q. An, M. Yang, J. Chu, J. Wu and Q. Zhu,
Efficiency evaluation of an interactive system by data envelopment analysis approach, Comput. Ind. Eng., 103 (2017), 17-25.
doi: 10.1016/j.cie.2016.10.010. |
[5] |
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978) 429–444.
doi: 10.1016/0377-2217(78)90138-8. |
[6] |
C.-J. Chen, H.-L. Wu and B.-W. Lin,
Evaluating the development of high-tech industries: Taiwan's science park, Technol. Forecast. Soc. Change., 73 (2006), 452-465.
doi: 10.1016/j.techfore.2005.04.003. |
[7] |
K. Chen and J. Guan,
Measuring the efficiency of China's regional innovation systems: Application of network data envelopment analysis (DEA), Reg. Stud., 46 (2012), 355-377.
doi: 10.1080/00343404.2010.497479. |
[8] |
K. Chen and M. Kou,
Staged efficiency and its determinants of regional innovation systems: A two-step analytical procedure, Ann. Reg. Sci., 52 (2014), 627-657.
doi: 10.1007/s00168-014-0604-6. |
[9] |
X. Chen, Z. Liu and Q. Zhu,
Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain, Technovation, 74-75 (2018), 42-53.
doi: 10.1016/j.technovation.2018.02.009. |
[10] |
Y. Chen, W. D. Cook, N. Li and J. Zhu,
Additive efficiency decomposition in two-stage DEA, Eur. J. Oper. Res., 196 (2009), 1170-1176.
doi: 10.1016/j.ejor.2008.05.011. |
[11] |
Y. Chen, J. Du, H. D. Sherman and J. Zhu,
DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.
doi: 10.1016/j.ejor.2010.03.031. |
[12] |
W. D. Cook and M. Hababou,
Sales performance measurement in bank branches, Omega, 29 (2001), 229-307.
doi: 10.1016/S0305-0483(01)00025-1. |
[13] |
W. D. Cook and L. M. Seiford,
Towards a general non-parametric model of corporate performance, Omega, 192 (2009), 1-17.
|
[14] |
Q. Deng, S. Zhou and F. Peng, Measuring green innovation efficiency for China's high-tech manufacturing industry: A network DEA approach, Math. Probl. Eng., (2020).
doi: 10.1155/2020/8902416. |
[15] |
R. Färe and S. Grosskopf,
Productivity and intermediate products: A frontier approach, Econ. Lett., 50 (1996), 65-70.
doi: 10.1016/0165-1765(95)00729-6. |
[16] |
Z. Griliches, Patent Statistics as Economic Indicators: A Survey, University of Chicago Press, 1998.
doi: 10.3386/w3301.![]() ![]() |
[17] |
J. Guan and K. Chen,
Measuring the innovation production process: A cross-region empirical study of China's high-tech innovations, Technovation, 30 (2010), 348-358.
doi: 10.1016/j.technovation.2010.02.001. |
[18] |
J. Guan and K. Chen,
Modeling the relative efficiency of national innovation systems, Res. Poli., 41 (2012), 102-115.
doi: 10.1016/j.respol.2011.07.001. |
[19] |
J. C. Guan, R. C. M. Yam, C. K. Mok and N. Ma,
A study of the relationship between competitiveness and technological innovation capability based on DEA models, Eur. J. Oper. Res., 170 (2006), 971-986.
doi: 10.1016/j.ejor.2004.07.054. |
[20] |
C. Guo and J. Zhu,
Non-cooperative two-stage network DEA model: Linear vs. parametric linear, Eur. J. Oper. Res., 258 (2017), 398-400.
doi: 10.1016/j.ejor.2016.11.039. |
[21] |
G. E. Halkos, N. G. Tzeremes and S. A. Kourtzidis,
A unified classification of two-stage DEA models, Surveys in Operations Research and Management Science, 19 (2014), 1-16.
doi: 10.1016/j.sorms.2013.10.001. |
[22] |
C. Han, S. R. Thomas, M. Yang, P. Ieromonachou and H. Zhang,
Evaluating R & D investment efficiency in China's high-tech industry, The Journal of High Technology Management Research, 28 (2017), 93-109.
doi: 10.1016/j.hitech.2017.04.007. |
[23] |
H. J. G. M. Hollanders and F. Celikel-Esser, Measuring Innovation Efficiency, European Commission, 2007. |
[24] |
Z. Hu, S. Yan, X. Li, L. Yao and Z. Luo, Evaluating the oil production and wastewater treatment efficiency by an extended two-stage network structure model with feedback variables, J. Environ. Manage., 251 (2019), 109578.
doi: 10.1016/j.jenvman.2019.109578. |
[25] |
C. Kao,
Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.
doi: 10.1016/j.ejor.2014.02.039. |
[26] |
C. Kao and S.-N. Hwang,
Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, Eur. J. Oper. Res., 185 (2008), 418-429.
doi: 10.1016/j.ejor.2006.11.041. |
[27] |
C. Kao and S. N. Hwang,
Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.
doi: 10.1016/j.dss.2009.06.002. |
[28] |
J. Lee, C. Kim and G. Choi,
Exploring data envelopment analysis for measuring collaborated innovation efficiency of small and medium-sized enterprises in Korea, Eur. J. Oper. Res., 278 (2019), 533-545.
doi: 10.1016/j.ejor.2018.08.044. |
[29] |
C. Li, M. Li, L. Zhang, T. Li, H. Ouyang and S. Na, Has the high-tech industry along the belt and road in China achieved green growth with technological innovation efficiency and environmental sustainability?, Int. J. Environ. Res. Public Health, 16 (2019), 3117.
doi: 10.3390/ijerph16173117. |
[30] |
H. Li, H. He, J. Shan and J. Cai,
Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis, Socio-Econ. Plan. Sci., 66 (2019), 136-148.
doi: 10.1016/j.seps.2018.07.007. |
[31] |
W. Li, Z. Li, L. Liang and W. D. Cook,
Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China, Socio-Econ. Plan. Sci., 60 (2017), 77-86.
doi: 10.1016/j.seps.2017.03.002. |
[32] |
Y. Li, Y. Chen, L. Liang and J. Xie,
DEA models for extended two-stage network structures, Omega, 40 (2012), 611-618.
doi: 10.1016/j.omega.2011.11.007. |
[33] |
L. Liang, W. D. Cook and J. Zhu,
DEA models for two-stage processes: Game approach and efficiency decomposition, Nav. Res. Log., 55 (2008), 643-653.
doi: 10.1002/nav.20308. |
[34] |
L. Liang, F. Feng, W. D. Cook and J. Zhu,
DEA models for supply chain efficiency evaluation, Ann. Oper. Res., 145 (2006), 35-49.
doi: 10.1007/s10479-006-0026-7. |
[35] |
L. Liang, Z.-Q. Li, W. D. Cook and J. Zhu,
Data envelopment analysis efficiency in two-stage networks with feedback, IIE. Trans., 43 (2011), 309-322.
doi: 10.1080/0740817X.2010.509307. |
[36] |
S. Lin, R. Lin, J. Sun, F. Wang and W. Wu, Dynamically evaluating technological innovation efficiency of high-tech industry in China: Provincial, regional and industrial perspective, Socio-Econ. Plan. Sci., (2021), 100939.
doi: 10.1016/j.seps.2020.100939. |
[37] |
Z. Liu, X. Chen, J. Chu and Q. Zhu,
Industrial development environment and innovation efficiency of high-tech industry: Analysis based on the framework of innovation systems, Technol. Anal. Strateg. Manage., 30 (2018), 434-446.
doi: 10.1080/09537325.2017.1337092. |
[38] |
W. Nasierowski and F. J. Arcelus,
On the efficiency of national innovation systems, Socio-Econ. Plan. Sci., 37 (2003), 215-234.
doi: 10.1016/S0038-0121(02)00046-0. |
[39] |
L. M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks, Manage. Sci., 45 (1999), 1270-1288.
doi: 10.1287/mnsc.45.9.1270. |
[40] |
Q. Shen,
Measuring the R & D Performance of High-Tech Manufacturing Sectors in China: A Data Envelopment Analysis Application, J. Comput. Theor. Nanosci., 13 (2016), 7773-7778.
doi: 10.1166/jctn.2016.5777. |
[41] |
X. Shi,
Environmental efficiency analysis based on relational two-stage DEA model, RAIRO-Oper. Res., 50 (2016), 965-977.
doi: 10.1051/ro/2015059. |
[42] |
K. Tone and M. Tsutsui,
Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.
doi: 10.1016/j.omega.2013.04.002. |
[43] |
F.-M. Tseng, Y.-J. Chiu and J.-S. Chen,
Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies, Omega, 37 (2009), 686-697.
doi: 10.1016/j.omega.2007.07.004. |
[44] |
C. H. Wang, R. D. Gopal and S. Zionts,
Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213.
|
[45] |
Q. Wang, Y. Hang, L. Sun and Z. Zhao,
Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach, Technol. Forecast. Soc. Change., 112 (2016), 254-261.
doi: 10.1016/j.techfore.2016.04.019. |
[46] |
Y. Wang, J.-F. Pan, R.-M. Pei, B.-W. Yi and G.-L. Yang, Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach, Socio-Econ. Plan. Sci., 71 (2020), 100810.
doi: 10.1016/j.seps.2020.100810. |
[47] |
H. Wu, K. Lv, L. Liang and H. Hu,
Measuring performance of sustainable manufacturing with recyclable wastes: A case from China's iron and steel industry, Omega, 66 (2017), 38-47.
doi: 10.1016/j.omega.2016.01.009. |
[48] |
J. Wu, Q. Zhu, J. Chu, H. Liu and L. Liang,
Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach, Transp. Res. D. Transp. Environ., 48 (2016), 460-472.
doi: 10.1016/j.trd.2015.08.001. |
[49] |
J. Wu, Q. Zhu, X. Ji, J. Chu and L. Liang,
Two-stage network processes with shared resources and resources recovered from undesirable outputs, Eur. J. Oper. Res., 251 (2016), 182-197.
doi: 10.1016/j.ejor.2015.10.049. |
[50] |
A. Yu, Y. Shi, J. You and J. Zhu,
Innovation performance evaluation for high-tech companies using a dynamic network data envelopment analysis approach, Eur. J. Oper. Res., 292 (2021), 199-212.
doi: 10.1016/j.ejor.2020.10.011. |
[51] |
Y. Zha and L. Liang,
Two-stage cooperation model with input freely distributed among the stages, Eur. J. Oper. Res., 205 (2010), 332-338.
doi: 10.1016/j.ejor.2010.01.010. |
[52] |
B. Zhang, Y. Luo and Y.-H. Chiu,
Efficiency evaluation of China's high-tech industry with a multi-activity network data envelopment analysis approach, Socio-Econ. Plan. Sci., 66 (2019), 2-9.
doi: 10.1016/j.seps.2018.07.013. |
[53] |
C. Zhang and Y. Lin,
Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China, Energy Policy, 49 (2012), 488-498.
doi: 10.1016/j.enpol.2012.06.048. |
[54] |
L. Zhao, Y. Zha, Y. Zhuang and L. Liang,
Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions, Eur. J. Oper. Res., 275 (2019), 1083-1095.
doi: 10.1016/j.ejor.2018.12.004. |
show all references
References:
[1] |
A. Amirteimoori,
A DEA two-stage decision processes with shared resources, Cent. Eur. J. Oper. Res., 21 (2013), 141-151.
doi: 10.1007/s10100-011-0218-3. |
[2] |
Q. An, F. Meng, B. Xiong, Z. Wang and X. Chen,
Assessing the relative efficiency of Chinese high-tech industries: A dynamic network data envelopment analysis approach, Ann. Oper. Res., 290 (2020), 707-729.
doi: 10.1007/s10479-018-2883-2. |
[3] |
Q. An, Z. Wang, A. Emrouznejad, Q. Zhu and X. Chen,
Efficiency evaluation of parallel interdependent processes systems: An application to Chinese 985 Project universities, Int. J. Prod. Res., 57 (2019), 5387-5399.
doi: 10.1080/00207543.2018.1521531. |
[4] |
Q. An, M. Yang, J. Chu, J. Wu and Q. Zhu,
Efficiency evaluation of an interactive system by data envelopment analysis approach, Comput. Ind. Eng., 103 (2017), 17-25.
doi: 10.1016/j.cie.2016.10.010. |
[5] |
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978) 429–444.
doi: 10.1016/0377-2217(78)90138-8. |
[6] |
C.-J. Chen, H.-L. Wu and B.-W. Lin,
Evaluating the development of high-tech industries: Taiwan's science park, Technol. Forecast. Soc. Change., 73 (2006), 452-465.
doi: 10.1016/j.techfore.2005.04.003. |
[7] |
K. Chen and J. Guan,
Measuring the efficiency of China's regional innovation systems: Application of network data envelopment analysis (DEA), Reg. Stud., 46 (2012), 355-377.
doi: 10.1080/00343404.2010.497479. |
[8] |
K. Chen and M. Kou,
Staged efficiency and its determinants of regional innovation systems: A two-step analytical procedure, Ann. Reg. Sci., 52 (2014), 627-657.
doi: 10.1007/s00168-014-0604-6. |
[9] |
X. Chen, Z. Liu and Q. Zhu,
Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain, Technovation, 74-75 (2018), 42-53.
doi: 10.1016/j.technovation.2018.02.009. |
[10] |
Y. Chen, W. D. Cook, N. Li and J. Zhu,
Additive efficiency decomposition in two-stage DEA, Eur. J. Oper. Res., 196 (2009), 1170-1176.
doi: 10.1016/j.ejor.2008.05.011. |
[11] |
Y. Chen, J. Du, H. D. Sherman and J. Zhu,
DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.
doi: 10.1016/j.ejor.2010.03.031. |
[12] |
W. D. Cook and M. Hababou,
Sales performance measurement in bank branches, Omega, 29 (2001), 229-307.
doi: 10.1016/S0305-0483(01)00025-1. |
[13] |
W. D. Cook and L. M. Seiford,
Towards a general non-parametric model of corporate performance, Omega, 192 (2009), 1-17.
|
[14] |
Q. Deng, S. Zhou and F. Peng, Measuring green innovation efficiency for China's high-tech manufacturing industry: A network DEA approach, Math. Probl. Eng., (2020).
doi: 10.1155/2020/8902416. |
[15] |
R. Färe and S. Grosskopf,
Productivity and intermediate products: A frontier approach, Econ. Lett., 50 (1996), 65-70.
doi: 10.1016/0165-1765(95)00729-6. |
[16] |
Z. Griliches, Patent Statistics as Economic Indicators: A Survey, University of Chicago Press, 1998.
doi: 10.3386/w3301.![]() ![]() |
[17] |
J. Guan and K. Chen,
Measuring the innovation production process: A cross-region empirical study of China's high-tech innovations, Technovation, 30 (2010), 348-358.
doi: 10.1016/j.technovation.2010.02.001. |
[18] |
J. Guan and K. Chen,
Modeling the relative efficiency of national innovation systems, Res. Poli., 41 (2012), 102-115.
doi: 10.1016/j.respol.2011.07.001. |
[19] |
J. C. Guan, R. C. M. Yam, C. K. Mok and N. Ma,
A study of the relationship between competitiveness and technological innovation capability based on DEA models, Eur. J. Oper. Res., 170 (2006), 971-986.
doi: 10.1016/j.ejor.2004.07.054. |
[20] |
C. Guo and J. Zhu,
Non-cooperative two-stage network DEA model: Linear vs. parametric linear, Eur. J. Oper. Res., 258 (2017), 398-400.
doi: 10.1016/j.ejor.2016.11.039. |
[21] |
G. E. Halkos, N. G. Tzeremes and S. A. Kourtzidis,
A unified classification of two-stage DEA models, Surveys in Operations Research and Management Science, 19 (2014), 1-16.
doi: 10.1016/j.sorms.2013.10.001. |
[22] |
C. Han, S. R. Thomas, M. Yang, P. Ieromonachou and H. Zhang,
Evaluating R & D investment efficiency in China's high-tech industry, The Journal of High Technology Management Research, 28 (2017), 93-109.
doi: 10.1016/j.hitech.2017.04.007. |
[23] |
H. J. G. M. Hollanders and F. Celikel-Esser, Measuring Innovation Efficiency, European Commission, 2007. |
[24] |
Z. Hu, S. Yan, X. Li, L. Yao and Z. Luo, Evaluating the oil production and wastewater treatment efficiency by an extended two-stage network structure model with feedback variables, J. Environ. Manage., 251 (2019), 109578.
doi: 10.1016/j.jenvman.2019.109578. |
[25] |
C. Kao,
Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.
doi: 10.1016/j.ejor.2014.02.039. |
[26] |
C. Kao and S.-N. Hwang,
Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, Eur. J. Oper. Res., 185 (2008), 418-429.
doi: 10.1016/j.ejor.2006.11.041. |
[27] |
C. Kao and S. N. Hwang,
Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.
doi: 10.1016/j.dss.2009.06.002. |
[28] |
J. Lee, C. Kim and G. Choi,
Exploring data envelopment analysis for measuring collaborated innovation efficiency of small and medium-sized enterprises in Korea, Eur. J. Oper. Res., 278 (2019), 533-545.
doi: 10.1016/j.ejor.2018.08.044. |
[29] |
C. Li, M. Li, L. Zhang, T. Li, H. Ouyang and S. Na, Has the high-tech industry along the belt and road in China achieved green growth with technological innovation efficiency and environmental sustainability?, Int. J. Environ. Res. Public Health, 16 (2019), 3117.
doi: 10.3390/ijerph16173117. |
[30] |
H. Li, H. He, J. Shan and J. Cai,
Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis, Socio-Econ. Plan. Sci., 66 (2019), 136-148.
doi: 10.1016/j.seps.2018.07.007. |
[31] |
W. Li, Z. Li, L. Liang and W. D. Cook,
Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China, Socio-Econ. Plan. Sci., 60 (2017), 77-86.
doi: 10.1016/j.seps.2017.03.002. |
[32] |
Y. Li, Y. Chen, L. Liang and J. Xie,
DEA models for extended two-stage network structures, Omega, 40 (2012), 611-618.
doi: 10.1016/j.omega.2011.11.007. |
[33] |
L. Liang, W. D. Cook and J. Zhu,
DEA models for two-stage processes: Game approach and efficiency decomposition, Nav. Res. Log., 55 (2008), 643-653.
doi: 10.1002/nav.20308. |
[34] |
L. Liang, F. Feng, W. D. Cook and J. Zhu,
DEA models for supply chain efficiency evaluation, Ann. Oper. Res., 145 (2006), 35-49.
doi: 10.1007/s10479-006-0026-7. |
[35] |
L. Liang, Z.-Q. Li, W. D. Cook and J. Zhu,
Data envelopment analysis efficiency in two-stage networks with feedback, IIE. Trans., 43 (2011), 309-322.
doi: 10.1080/0740817X.2010.509307. |
[36] |
S. Lin, R. Lin, J. Sun, F. Wang and W. Wu, Dynamically evaluating technological innovation efficiency of high-tech industry in China: Provincial, regional and industrial perspective, Socio-Econ. Plan. Sci., (2021), 100939.
doi: 10.1016/j.seps.2020.100939. |
[37] |
Z. Liu, X. Chen, J. Chu and Q. Zhu,
Industrial development environment and innovation efficiency of high-tech industry: Analysis based on the framework of innovation systems, Technol. Anal. Strateg. Manage., 30 (2018), 434-446.
doi: 10.1080/09537325.2017.1337092. |
[38] |
W. Nasierowski and F. J. Arcelus,
On the efficiency of national innovation systems, Socio-Econ. Plan. Sci., 37 (2003), 215-234.
doi: 10.1016/S0038-0121(02)00046-0. |
[39] |
L. M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks, Manage. Sci., 45 (1999), 1270-1288.
doi: 10.1287/mnsc.45.9.1270. |
[40] |
Q. Shen,
Measuring the R & D Performance of High-Tech Manufacturing Sectors in China: A Data Envelopment Analysis Application, J. Comput. Theor. Nanosci., 13 (2016), 7773-7778.
doi: 10.1166/jctn.2016.5777. |
[41] |
X. Shi,
Environmental efficiency analysis based on relational two-stage DEA model, RAIRO-Oper. Res., 50 (2016), 965-977.
doi: 10.1051/ro/2015059. |
[42] |
K. Tone and M. Tsutsui,
Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.
doi: 10.1016/j.omega.2013.04.002. |
[43] |
F.-M. Tseng, Y.-J. Chiu and J.-S. Chen,
Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies, Omega, 37 (2009), 686-697.
doi: 10.1016/j.omega.2007.07.004. |
[44] |
C. H. Wang, R. D. Gopal and S. Zionts,
Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213.
|
[45] |
Q. Wang, Y. Hang, L. Sun and Z. Zhao,
Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach, Technol. Forecast. Soc. Change., 112 (2016), 254-261.
doi: 10.1016/j.techfore.2016.04.019. |
[46] |
Y. Wang, J.-F. Pan, R.-M. Pei, B.-W. Yi and G.-L. Yang, Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach, Socio-Econ. Plan. Sci., 71 (2020), 100810.
doi: 10.1016/j.seps.2020.100810. |
[47] |
H. Wu, K. Lv, L. Liang and H. Hu,
Measuring performance of sustainable manufacturing with recyclable wastes: A case from China's iron and steel industry, Omega, 66 (2017), 38-47.
doi: 10.1016/j.omega.2016.01.009. |
[48] |
J. Wu, Q. Zhu, J. Chu, H. Liu and L. Liang,
Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach, Transp. Res. D. Transp. Environ., 48 (2016), 460-472.
doi: 10.1016/j.trd.2015.08.001. |
[49] |
J. Wu, Q. Zhu, X. Ji, J. Chu and L. Liang,
Two-stage network processes with shared resources and resources recovered from undesirable outputs, Eur. J. Oper. Res., 251 (2016), 182-197.
doi: 10.1016/j.ejor.2015.10.049. |
[50] |
A. Yu, Y. Shi, J. You and J. Zhu,
Innovation performance evaluation for high-tech companies using a dynamic network data envelopment analysis approach, Eur. J. Oper. Res., 292 (2021), 199-212.
doi: 10.1016/j.ejor.2020.10.011. |
[51] |
Y. Zha and L. Liang,
Two-stage cooperation model with input freely distributed among the stages, Eur. J. Oper. Res., 205 (2010), 332-338.
doi: 10.1016/j.ejor.2010.01.010. |
[52] |
B. Zhang, Y. Luo and Y.-H. Chiu,
Efficiency evaluation of China's high-tech industry with a multi-activity network data envelopment analysis approach, Socio-Econ. Plan. Sci., 66 (2019), 2-9.
doi: 10.1016/j.seps.2018.07.013. |
[53] |
C. Zhang and Y. Lin,
Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China, Energy Policy, 49 (2012), 488-498.
doi: 10.1016/j.enpol.2012.06.048. |
[54] |
L. Zhao, Y. Zha, Y. Zhuang and L. Liang,
Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions, Eur. J. Oper. Res., 275 (2019), 1083-1095.
doi: 10.1016/j.ejor.2018.12.004. |






Variables | Years | 2012 | 2013 | 2014 | 2015 | 2016 | |
RDS input | Government funds | Mean | 501.39 | 573.54 | 615.54 | 724.66 | 731.88 |
(million RMB Yuan) | Std.dev. | 644.98 | 690.40 | 790.16 | 875.93 | 874.37 | |
Shared input | Full-time equivalent | Mean | 21487.59 | 23104.03 | 24183.14 | 25065.24 | 25186.93 |
(man-year) | Std.dev. | 43155.81 | 41366.88 | 41416.91 | 41394.00 | 41679.17 | |
Feedback variable | Self-raised fund by enterprises | Mean | 5359.29 | 6244.10 | 7090.63 | 8168.44 | 9171.59 |
(million RMB Yuan) | Std.dev. | 10841.96 | 12328.35 | 13644.27 | 15525.56 | 17393.22 | |
Intermediate measure | Number of patents in force | Mean | 3990.69 | 4784.72 | 6225.90 | 8321.66 | 10912.10 |
(piece) | Std.dev. | 11329.12 | 13060.45 | 16498.47 | 23087.70 | 30261.18 | |
CS inputs | Expenditure on new products development | Mean | 7338.06 | 8371.73 | 9535.57 | 10442.85 | 12266.17 |
(million RMB Yuan) | Std.dev. | 13777.38 | 15375.75 | 18288.53 | 20590.16 | 25004.15 | |
Expenditure for technical renovation | Mean | 1272.00 | 1649.92 | 1291.33 | 1382.23 | 1557.09 | |
(million RMB Yuan) | Std.dev. | 2279.31 | 2702.51 | 1849.80 | 2006.38 | 2568.56 | |
CS outputs | Sales revenue of new products | Mean | 88167.55 | 107676.75 | 122389.82 | 142785.98 | 165183.75 |
(million RMB Yuan) | Std.dev. | 185038.44 | 207162.49 | 231072.10 | 261637.21 | 321195.75 | |
Main business income | Mean | 349095.52 | 399952.41 | 438946.90 | 482269.66 | 529854.14 | |
(million RMB Yuan) | Std.dev. | 598955.60 | 656947.81 | 703448.92 | 770416.46 | 853237.12 |
Variables | Years | 2012 | 2013 | 2014 | 2015 | 2016 | |
RDS input | Government funds | Mean | 501.39 | 573.54 | 615.54 | 724.66 | 731.88 |
(million RMB Yuan) | Std.dev. | 644.98 | 690.40 | 790.16 | 875.93 | 874.37 | |
Shared input | Full-time equivalent | Mean | 21487.59 | 23104.03 | 24183.14 | 25065.24 | 25186.93 |
(man-year) | Std.dev. | 43155.81 | 41366.88 | 41416.91 | 41394.00 | 41679.17 | |
Feedback variable | Self-raised fund by enterprises | Mean | 5359.29 | 6244.10 | 7090.63 | 8168.44 | 9171.59 |
(million RMB Yuan) | Std.dev. | 10841.96 | 12328.35 | 13644.27 | 15525.56 | 17393.22 | |
Intermediate measure | Number of patents in force | Mean | 3990.69 | 4784.72 | 6225.90 | 8321.66 | 10912.10 |
(piece) | Std.dev. | 11329.12 | 13060.45 | 16498.47 | 23087.70 | 30261.18 | |
CS inputs | Expenditure on new products development | Mean | 7338.06 | 8371.73 | 9535.57 | 10442.85 | 12266.17 |
(million RMB Yuan) | Std.dev. | 13777.38 | 15375.75 | 18288.53 | 20590.16 | 25004.15 | |
Expenditure for technical renovation | Mean | 1272.00 | 1649.92 | 1291.33 | 1382.23 | 1557.09 | |
(million RMB Yuan) | Std.dev. | 2279.31 | 2702.51 | 1849.80 | 2006.38 | 2568.56 | |
CS outputs | Sales revenue of new products | Mean | 88167.55 | 107676.75 | 122389.82 | 142785.98 | 165183.75 |
(million RMB Yuan) | Std.dev. | 185038.44 | 207162.49 | 231072.10 | 261637.21 | 321195.75 | |
Main business income | Mean | 349095.52 | 399952.41 | 438946.90 | 482269.66 | 529854.14 | |
(million RMB Yuan) | Std.dev. | 598955.60 | 656947.81 | 703448.92 | 770416.46 | 853237.12 |
Area | Cooperative model | Non-cooperative model | Traditional model | ||||||
Overall | RDS | CS | RDS as leader | CS as leader | |||||
RDS | CS | RDS | CS | ||||||
Eastern area | Beijing | 0.957 | 1.000 | 0.913 | 1.000 | 0.896 | 0.805 | 1.000 | 0.887 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
Hebei | 0.693 | 0.630 | 0.756 | 0.960 | 0.356 | 0.336 | 1.000 | 0.369 | |
Shanghai | 0.945 | 1.000 | 0.890 | 1.000 | 0.860 | 0.814 | 1.000 | 0.840 | |
Jiangsu | 0.830 | 1.000 | 0.661 | 1.000 | 0.681 | 0.546 | 1.000 | 0.848 | |
Zhejiang | 0.709 | 0.559 | 0.860 | 0.977 | 0.341 | 0.390 | 1.000 | 0.462 | |
Fujian | 0.714 | 0.613 | 0.815 | 0.977 | 0.417 | 0.383 | 1.000 | 0.913 | |
Shandong | 0.744 | 1.000 | 0.489 | 1.000 | 0.497 | 0.410 | 1.000 | 0.209 | |
Guangdong | 0.905 | 1.000 | 0.811 | 1.000 | 0.776 | 0.686 | 1.000 | 0.853 | |
Hainan | 0.751 | 0.999 | 0.502 | 1.000 | 0.502 | 0.289 | 1.000 | 0.850 | |
Central area | Shanxi | 0.852 | 0.995 | 0.710 | 0.995 | 0.709 | 0.561 | 1.000 | 0.355 |
Anhui | 0.775 | 1.000 | 0.550 | 1.000 | 0.550 | 0.436 | 1.000 | 0.475 | |
Jiangxi | 0.804 | 0.870 | 0.738 | 0.946 | 0.654 | 0.388 | 1.000 | 0.552 | |
Henan | 0.832 | 0.743 | 0.922 | 0.655 | 0.923 | 0.571 | 1.000 | 0.775 | |
Hubei | 0.725 | 0.546 | 0.904 | 1.000 | 0.372 | 0.402 | 1.000 | 0.485 | |
Hunan | 0.772 | 1.000 | 0.544 | 0.919 | 0.560 | 0.426 | 1.000 | 0.968 | |
Northeastern | Liaoning | 0.762 | 1.000 | 0.524 | 1.000 | 0.525 | 0.421 | 1.000 | 0.328 |
area | Jilin | 0.906 | 1.000 | 0.812 | 1.000 | 0.812 | 0.700 | 1.000 | 0.556 |
Heilongjiang | 0.637 | 0.346 | 0.929 | 0.873 | 0.166 | 0.237 | 1.000 | 0.682 | |
Western area | Inner Mongolia | 0.880 | 0.709 | 0.849 | 0.995 | 0.709 | 0.561 | 1.000 | 0.957 |
Guangxi | 0.974 | 1.000 | 0.947 | 1.000 | 0.947 | 0.914 | 1.000 | 0.225 | |
Chongqing | 0.978 | 0.991 | 0.964 | 0.930 | 0.977 | 0.874 | 1.000 | 1.000 | |
Sichuan | 0.807 | 1.000 | 0.614 | 1.000 | 0.615 | 0.518 | 1.000 | 0.575 | |
Guizhou | 0.658 | 0.700 | 0.617 | 0.995 | 0.259 | 0.196 | 1.000 | 0.250 | |
Yunnan | 0.768 | 1.000 | 0.536 | 1.000 | 0.537 | 0.381 | 1.000 | 0.326 | |
Shaanxi | 0.645 | 0.314 | 0.976 | 0.932 | 0.171 | 0.244 | 1.000 | 0.216 | |
Qinghai | 0.735 | 0.768 | 0.701 | 1.000 | 0.431 | 0.388 | 1.000 | 0.426 | |
Ningxia | 0.657 | 0.549 | 0.764 | 0.819 | 0.356 | 0.301 | 1.000 | 0.330 | |
Xinjiang | 0.778 | 0.999 | 0.558 | 1.000 | 0.558 | 0.455 | 1.000 | 0.497 | |
China | Mean | 0.800 | 0.839 | 0.754 | 0.965 | 0.592 | 0.505 | 1.000 | 0.593 |
Area | Cooperative model | Non-cooperative model | Traditional model | ||||||
Overall | RDS | CS | RDS as leader | CS as leader | |||||
RDS | CS | RDS | CS | ||||||
Eastern area | Beijing | 0.957 | 1.000 | 0.913 | 1.000 | 0.896 | 0.805 | 1.000 | 0.887 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
Hebei | 0.693 | 0.630 | 0.756 | 0.960 | 0.356 | 0.336 | 1.000 | 0.369 | |
Shanghai | 0.945 | 1.000 | 0.890 | 1.000 | 0.860 | 0.814 | 1.000 | 0.840 | |
Jiangsu | 0.830 | 1.000 | 0.661 | 1.000 | 0.681 | 0.546 | 1.000 | 0.848 | |
Zhejiang | 0.709 | 0.559 | 0.860 | 0.977 | 0.341 | 0.390 | 1.000 | 0.462 | |
Fujian | 0.714 | 0.613 | 0.815 | 0.977 | 0.417 | 0.383 | 1.000 | 0.913 | |
Shandong | 0.744 | 1.000 | 0.489 | 1.000 | 0.497 | 0.410 | 1.000 | 0.209 | |
Guangdong | 0.905 | 1.000 | 0.811 | 1.000 | 0.776 | 0.686 | 1.000 | 0.853 | |
Hainan | 0.751 | 0.999 | 0.502 | 1.000 | 0.502 | 0.289 | 1.000 | 0.850 | |
Central area | Shanxi | 0.852 | 0.995 | 0.710 | 0.995 | 0.709 | 0.561 | 1.000 | 0.355 |
Anhui | 0.775 | 1.000 | 0.550 | 1.000 | 0.550 | 0.436 | 1.000 | 0.475 | |
Jiangxi | 0.804 | 0.870 | 0.738 | 0.946 | 0.654 | 0.388 | 1.000 | 0.552 | |
Henan | 0.832 | 0.743 | 0.922 | 0.655 | 0.923 | 0.571 | 1.000 | 0.775 | |
Hubei | 0.725 | 0.546 | 0.904 | 1.000 | 0.372 | 0.402 | 1.000 | 0.485 | |
Hunan | 0.772 | 1.000 | 0.544 | 0.919 | 0.560 | 0.426 | 1.000 | 0.968 | |
Northeastern | Liaoning | 0.762 | 1.000 | 0.524 | 1.000 | 0.525 | 0.421 | 1.000 | 0.328 |
area | Jilin | 0.906 | 1.000 | 0.812 | 1.000 | 0.812 | 0.700 | 1.000 | 0.556 |
Heilongjiang | 0.637 | 0.346 | 0.929 | 0.873 | 0.166 | 0.237 | 1.000 | 0.682 | |
Western area | Inner Mongolia | 0.880 | 0.709 | 0.849 | 0.995 | 0.709 | 0.561 | 1.000 | 0.957 |
Guangxi | 0.974 | 1.000 | 0.947 | 1.000 | 0.947 | 0.914 | 1.000 | 0.225 | |
Chongqing | 0.978 | 0.991 | 0.964 | 0.930 | 0.977 | 0.874 | 1.000 | 1.000 | |
Sichuan | 0.807 | 1.000 | 0.614 | 1.000 | 0.615 | 0.518 | 1.000 | 0.575 | |
Guizhou | 0.658 | 0.700 | 0.617 | 0.995 | 0.259 | 0.196 | 1.000 | 0.250 | |
Yunnan | 0.768 | 1.000 | 0.536 | 1.000 | 0.537 | 0.381 | 1.000 | 0.326 | |
Shaanxi | 0.645 | 0.314 | 0.976 | 0.932 | 0.171 | 0.244 | 1.000 | 0.216 | |
Qinghai | 0.735 | 0.768 | 0.701 | 1.000 | 0.431 | 0.388 | 1.000 | 0.426 | |
Ningxia | 0.657 | 0.549 | 0.764 | 0.819 | 0.356 | 0.301 | 1.000 | 0.330 | |
Xinjiang | 0.778 | 0.999 | 0.558 | 1.000 | 0.558 | 0.455 | 1.000 | 0.497 | |
China | Mean | 0.800 | 0.839 | 0.754 | 0.965 | 0.592 | 0.505 | 1.000 | 0.593 |
Efficiency comparisons | Cooperative model | RDS as the leader | CS as the leader | ||
Statistic z (P-value) | Statistic z (P-value) | Statistic z (P-value) | |||
RDS efficiency VS. | -1.389 | -4.441 | -4.462 | ||
CS efficiency | (0.165)INSIG | (0.000)SIG | (0.000)SIG | ||
* The significance level is 5%. |
Efficiency comparisons | Cooperative model | RDS as the leader | CS as the leader | ||
Statistic z (P-value) | Statistic z (P-value) | Statistic z (P-value) | |||
RDS efficiency VS. | -1.389 | -4.441 | -4.462 | ||
CS efficiency | (0.165)INSIG | (0.000)SIG | (0.000)SIG | ||
* The significance level is 5%. |
[1] |
Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022006 |
[2] |
Subhendu Ruidas, Mijanur Rahaman Seikh, Prasun Kumar Nayak. A production inventory model for high-tech products involving two production runs and a product variation. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022038 |
[3] |
Ming-hui Wang, Nan-jing Huang, Donal O'Regan. Optimal product release time for a new high-tech startup firm under technical uncertainty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021186 |
[4] |
Bin Li, Jie Sun, Honglei Xu, Min Zhang. A class of two-stage distributionally robust games. Journal of Industrial and Management Optimization, 2019, 15 (1) : 387-400. doi: 10.3934/jimo.2018048 |
[5] |
Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311 |
[6] |
Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547 |
[7] |
Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197 |
[8] |
Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501 |
[9] |
Tugba Sarac, Aydin Sipahioglu, Emine Akyol Ozer. A two-stage solution approach for plastic injection machines scheduling problem. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1289-1314. doi: 10.3934/jimo.2020022 |
[10] |
Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023 |
[11] |
Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531 |
[12] |
Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043 |
[13] |
Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014 |
[14] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[15] |
Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022027 |
[16] |
Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022058 |
[17] |
René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363 |
[18] |
Chien Hsun Tseng. Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system. Journal of Industrial and Management Optimization, 2013, 9 (1) : 205-225. doi: 10.3934/jimo.2013.9.205 |
[19] |
Qingqing Ye. Algorithmic computation of MAP/PH/1 queue with finite system capacity and two-stage vacations. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2459-2477. doi: 10.3934/jimo.2019063 |
[20] |
Chao Mi, Jun Wang, Weijian Mi, Youfang Huang, Zhiwei Zhang, Yongsheng Yang, Jun Jiang, Postolache Octavian. Research on regional clustering and two-stage SVM method for container truck recognition. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1117-1133. doi: 10.3934/dcdss.2019077 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]