• Previous Article
    The optimal product-line design and incentive mechanism in a supply chain with customer environmental awareness
  • JIMO Home
  • This Issue
  • Next Article
    An exact and explicit formula for pricing lookback options with regime switching
doi: 10.3934/jimo.2021115
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Filled function method to optimize supply chain transportation costs

1. 

School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China

2. 

School of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China

* Corresponding author: Youlin Shang

Received  October 2020 Revised  February 2021 Early access July 2021

Fund Project: The first author is supported by NSF grant of China (Nos.12071112, 11701150, 11471102); Basic research projects for key scientific research projects in Henan Province of China (No.20ZX001)

The transportation-based supply chain model can be formulated as the constrained nonlinear programming problems. When solving such problems, the classic optimization algorithms are often limited to local minimums, causing the difficulty to find the global optimal solution. Aiming at this problem, a filled function method with a single parameter is given to cross the local minimum. Based on the characteristics of the filled function, a new filled function algorithm that can obtain the global optimal solution is designed. Numerical experiments verify the feasibility and effectiveness of the algorithm. Finally, the filled function algorithm is applied to the solution of supply chain problems, and the numerical results show that the algorithm can also address decision-making problems of supply chain transportation effectively.

Citation: Deqiang Qu, Youlin Shang, Dan Wu, Guanglei Sun. Filled function method to optimize supply chain transportation costs. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021115
References:
[1]

R. P. Ge, A filled function method for finding a global minimizer of a function of several variables, Mathematical Programming, 46 (1990), 191-204.  doi: 10.1007/BF01585737.

[2]

R. P. Ge and Y. F. Qin, A class of filled function for finding global minimizer of a function of several variables, Journal of Optimization Theory and Applicaions, 54 (1987), 241-252.  doi: 10.1007/BF00939433.

[3]

A. V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions, SIAM Journal on Scientific and Statistical Computing, 6 (1985), 15-29.  doi: 10.1137/0906002.

[4]

J. Y. LiB. S. Han and Y. J. Yang, A novel one parameter filled function, Comm. on Appl. Math. and Comput, 24 (2010), 17-24. 

[5]

J. R. LiY. L. Shang and P. Han, New Tunnel-Filled Function Method for Discrete Global Optimization, Journal of the Operations Research Society of China, 5 (2017), 291-300.  doi: 10.1007/s40305-017-0160-8.

[6]

H. W. LinY. L. GaoX. Wang and S. Su, A filled function which has the same local minimizer of the objective function, Optimization Letters, 13 (2019), 761-776.  doi: 10.1007/s11590-018-1275-5.

[7]

Y. L. Shang, Research on Filled Function Method in Nonlinear Global Optimization, Ph.D thesis, Shanghai University in Shanghai of China, 2005.

[8]

Y. L. Shang and L. S. Zhang, Finding discrete global minima with a filled function for integer programming, European Journal of Operational Research, 189 (2008), 31-40.  doi: 10.1016/j.ejor.2007.05.028.

[9]

L. Y. Shu and Q. P. Yan, Study of a non-linear optimal model on the manufacturer core supply chain, Systems Engineering-Theory and Practice, 2 (2006), 36-41. 

[10]

W. X. WangY. L. Shang and D. Wang, Filled function method for solving non-smooth box constrained global optimization problems, Operational Research Transactions, 23 (2019), 28-34. 

[11]

W. X. WangY. L. Shang and L. S. Zhang, A filled function method with one parameter for constrained global optimization, Chinese Journal of Engineering Mathematics, 25 (2008), 795-803. 

[12]

Y. WangW. Fang and T. Wu, A cut-peak function method for global optimization, Journal of Computational and Applied Mathematics, 230 (2009), 135-142.  doi: 10.1016/j.cam.2008.10.069.

[13]

Y. J. YangM. L. He and Y. L. Gao, Discrete Global Optimization Problems with a Modified Discrete Filled Function, Journal of the Operations Research Society of China, 3 (2015), 297-315.  doi: 10.1007/s40305-015-0085-z.

[14]

Y. J. Yang and Y. M. Liang, A new discrete filled function algorithm for discrete global optimization, Journal of Computational and Applied Mathematics, 202 (2007), 280-291.  doi: 10.1016/j.cam.2006.02.032.

[15]

Y. J. Yang and Y. L. Shang, A new filled function method for unconstrained global optimization, Applied Mathematics and Computation, 173 (2006), 501-512.  doi: 10.1016/j.amc.2005.04.046.

[16]

Y. J. YangZ. Y. Wu and F. S. Bai, A filled function method for constrained nonlinear integer programming, Journal of Industrial and Management Optimization, 4 (2008), 353-362.  doi: 10.3934/jimo.2008.4.353.

[17]

L. YuanZ. Wan and Q. Tang, A criterion for an approximation global optimal solution based on the filled functions, Journal of Industrial and Management Optimization, 12 (2016), 375-387.  doi: 10.3934/jimo.2016.12.375.

[18]

L. YuanZ. WanJ. Zhang and B. Sun, A filled function method for solving nonlinear complementarity problem, Journal of Industrial and Management Optimization, 5 (2009), 911-928.  doi: 10.3934/jimo.2009.5.911.

[19]

Y. ZhangL. S. Zhang and Y. T. Xu, New filled functions for non-smooth global optimization, Applied Mathematical Modelling, 33 (2009), 3114-3129.  doi: 10.1016/j.apm.2008.10.015.

show all references

References:
[1]

R. P. Ge, A filled function method for finding a global minimizer of a function of several variables, Mathematical Programming, 46 (1990), 191-204.  doi: 10.1007/BF01585737.

[2]

R. P. Ge and Y. F. Qin, A class of filled function for finding global minimizer of a function of several variables, Journal of Optimization Theory and Applicaions, 54 (1987), 241-252.  doi: 10.1007/BF00939433.

[3]

A. V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions, SIAM Journal on Scientific and Statistical Computing, 6 (1985), 15-29.  doi: 10.1137/0906002.

[4]

J. Y. LiB. S. Han and Y. J. Yang, A novel one parameter filled function, Comm. on Appl. Math. and Comput, 24 (2010), 17-24. 

[5]

J. R. LiY. L. Shang and P. Han, New Tunnel-Filled Function Method for Discrete Global Optimization, Journal of the Operations Research Society of China, 5 (2017), 291-300.  doi: 10.1007/s40305-017-0160-8.

[6]

H. W. LinY. L. GaoX. Wang and S. Su, A filled function which has the same local minimizer of the objective function, Optimization Letters, 13 (2019), 761-776.  doi: 10.1007/s11590-018-1275-5.

[7]

Y. L. Shang, Research on Filled Function Method in Nonlinear Global Optimization, Ph.D thesis, Shanghai University in Shanghai of China, 2005.

[8]

Y. L. Shang and L. S. Zhang, Finding discrete global minima with a filled function for integer programming, European Journal of Operational Research, 189 (2008), 31-40.  doi: 10.1016/j.ejor.2007.05.028.

[9]

L. Y. Shu and Q. P. Yan, Study of a non-linear optimal model on the manufacturer core supply chain, Systems Engineering-Theory and Practice, 2 (2006), 36-41. 

[10]

W. X. WangY. L. Shang and D. Wang, Filled function method for solving non-smooth box constrained global optimization problems, Operational Research Transactions, 23 (2019), 28-34. 

[11]

W. X. WangY. L. Shang and L. S. Zhang, A filled function method with one parameter for constrained global optimization, Chinese Journal of Engineering Mathematics, 25 (2008), 795-803. 

[12]

Y. WangW. Fang and T. Wu, A cut-peak function method for global optimization, Journal of Computational and Applied Mathematics, 230 (2009), 135-142.  doi: 10.1016/j.cam.2008.10.069.

[13]

Y. J. YangM. L. He and Y. L. Gao, Discrete Global Optimization Problems with a Modified Discrete Filled Function, Journal of the Operations Research Society of China, 3 (2015), 297-315.  doi: 10.1007/s40305-015-0085-z.

[14]

Y. J. Yang and Y. M. Liang, A new discrete filled function algorithm for discrete global optimization, Journal of Computational and Applied Mathematics, 202 (2007), 280-291.  doi: 10.1016/j.cam.2006.02.032.

[15]

Y. J. Yang and Y. L. Shang, A new filled function method for unconstrained global optimization, Applied Mathematics and Computation, 173 (2006), 501-512.  doi: 10.1016/j.amc.2005.04.046.

[16]

Y. J. YangZ. Y. Wu and F. S. Bai, A filled function method for constrained nonlinear integer programming, Journal of Industrial and Management Optimization, 4 (2008), 353-362.  doi: 10.3934/jimo.2008.4.353.

[17]

L. YuanZ. Wan and Q. Tang, A criterion for an approximation global optimal solution based on the filled functions, Journal of Industrial and Management Optimization, 12 (2016), 375-387.  doi: 10.3934/jimo.2016.12.375.

[18]

L. YuanZ. WanJ. Zhang and B. Sun, A filled function method for solving nonlinear complementarity problem, Journal of Industrial and Management Optimization, 5 (2009), 911-928.  doi: 10.3934/jimo.2009.5.911.

[19]

Y. ZhangL. S. Zhang and Y. T. Xu, New filled functions for non-smooth global optimization, Applied Mathematical Modelling, 33 (2009), 3114-3129.  doi: 10.1016/j.apm.2008.10.015.

Table 1.   
The proposed Algorithm Algorithm in [10]
$ f({x^*}) $ $ f({x^*}) $
Problem 1 -1.0316 -1.0316
Problem 2 0 0
Problem 3 1.513e-08 0
Problem 4, n=10 4.4277e-43 1.3790e-14
Problem 4, n=20 3.2490e-44 3.0992e-14
Problem 4, n=50 1.8410e-43 9.85.1e-13
The proposed Algorithm Algorithm in [10]
$ f({x^*}) $ $ f({x^*}) $
Problem 1 -1.0316 -1.0316
Problem 2 0 0
Problem 3 1.513e-08 0
Problem 4, n=10 4.4277e-43 1.3790e-14
Problem 4, n=20 3.2490e-44 3.0992e-14
Problem 4, n=50 1.8410e-43 9.85.1e-13
Table 2.   
The proposed Algorithm Algorithm in [10]
CPU run time(s) Total times(times) CPU run time(s) Total times(times)
Problem 1 19.1964 1986 26.3325 2453
Problem 2 15.1005 1537 18.8756 1421
Problem 3 10.8827 961 14.3194 1227
Problem 4, n=10 16.0294 1920 70.5483 8895
Problem 4, n=20 24.6212 4696 91.3288 18242
Problem 4, n=50 34.9223 6728 195.3385 43232
The proposed Algorithm Algorithm in [10]
CPU run time(s) Total times(times) CPU run time(s) Total times(times)
Problem 1 19.1964 1986 26.3325 2453
Problem 2 15.1005 1537 18.8756 1421
Problem 3 10.8827 961 14.3194 1227
Problem 4, n=10 16.0294 1920 70.5483 8895
Problem 4, n=20 24.6212 4696 91.3288 18242
Problem 4, n=50 34.9223 6728 195.3385 43232
Table 3.  Transporter to seller unit cost and maximum transport volume
Transporter 1 Transporter 2
Mode of generalized transport unit cost($/t) maximum amount(t) unit cost($/t) maximum amount(t)
Seller 1 220 200
Transporter 1 Seller 2 250 1000 220 1500
Seller 3 210 210
Seller 1 180 200
Transporter 2 Seller 2 200 1200 210 1000
Seller 3 210 220
Transporter 1 Transporter 2
Mode of generalized transport unit cost($/t) maximum amount(t) unit cost($/t) maximum amount(t)
Seller 1 220 200
Transporter 1 Seller 2 250 1000 220 1500
Seller 3 210 210
Seller 1 180 200
Transporter 2 Seller 2 200 1200 210 1000
Seller 3 210 220
Table 4.  Transporter to supplier unit cost and maximum transport volume
Transporter 1 Transporter 2
Mode of generalized transport unit cost($/t) maximum amount(t) unit cost($/t) maximum amount(t)
Transporter 1 Supplier 1 180 2000 190 2500
Transporter 2 Supplier 2 210 2200 220 2000
Transporter 1 Transporter 2
Mode of generalized transport unit cost($/t) maximum amount(t) unit cost($/t) maximum amount(t)
Transporter 1 Supplier 1 180 2000 190 2500
Transporter 2 Supplier 2 210 2200 220 2000
Table 5.  Seller's unit product cost and demand
Seller 1 Seller 2 Seller 3
Unit product sales cost ($/t) 80 90 85
Product demand (t) 1000 1200 800
Seller 1 Seller 2 Seller 3
Unit product sales cost ($/t) 80 90 85
Product demand (t) 1000 1200 800
Table 6.   
$ {x^*} $ $ {\beta ^*} $ $ f({x^*}) $
(0 0 800 0 1000 200 0 0 0 0 1000 0) (0.556 0 0.444 0) 1171.8
$ {x^*} $ $ {\beta ^*} $ $ f({x^*}) $
(0 0 800 0 1000 200 0 0 0 0 1000 0) (0.556 0 0.444 0) 1171.8
[1]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[2]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[3]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[4]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial and Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[5]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[6]

Xiaohui Ren, Daofang Chang, Jin Shen. Optimization of the product service supply chain under the influence of presale services. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021130

[7]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[8]

Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009

[9]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[10]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[11]

Abdolhossein Sadrnia, Amirreza Payandeh Sani, Najme Roghani Langarudi. Sustainable closed-loop supply chain network optimization for construction machinery recovering. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2389-2414. doi: 10.3934/jimo.2020074

[12]

Ziyuan Zhang, Liying Yu. Joint emission reduction dynamic optimization and coordination in the supply chain considering fairness concern and reference low-carbon effect. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021155

[13]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[14]

Jianbin Li, Niu Yu, Zhixue Liu, Lianjie Shu. Optimal rebate strategies in a two-echelon supply chain with nonlinear and linear multiplicative demands. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1587-1611. doi: 10.3934/jimo.2016.12.1587

[15]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial and Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[16]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[17]

Lianxia Zhao, Jianxin You, Shu-Cherng Fang. A dual-channel supply chain problem with resource-utilization penalty: Who can benefit from sales effort?. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2837-2853. doi: 10.3934/jimo.2020097

[18]

Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048

[19]

Fatemeh Kangi, Seyed Hamid Reza Pasandideh, Esmaeil Mehdizadeh, Hamed Soleimani. The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021118

[20]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]