
-
Previous Article
Optimal financing strategy in a closed-loop supply chain for construction machinery remanufacturing with emissions abatement
- JIMO Home
- This Issue
-
Next Article
Improved Lagrangian-PPA based prediction correction method for linearly constrained convex optimization
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy
1. | Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran |
2. | Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran |
3. | School of Mathematics and Statistics, University of Melbourne, Melbourne, Parkville, VIC 3010, Australia |
The main reason for the development of this research refers to the increased attention of businesses to the CLSC concept due to the social responsibilities, strict international legislations and economic motives. Hence, this study investigates the issue of optimizing a CLSC problem involving multiple manufacturers, a hybrid cross-dock/collection center, multiple retailers and a disposal center in deterministic, multi-product and multi-period contexts. The bi-objective MILP model developed here is to simultaneously minimize total costs and total processing time of CLSC. Both strategic and tactical decisions are considered in the model where retailer demands and capacity constraints are satisfied. Since the presented model is NP-hard, NSGAII and MOPSO are hired to find near-to-optimal results for practical problem sizes in polynomial time.Then, to increase the accuracy of solutions by tuning the algorithms' parameters, the Taguchi method is applied. The practicality of the developed
References:
[1] |
R. Accorsi, R. Manzini, C. Pini and S. Penazzi,
On the design of closed-loop networks for product life cycle management: Economic, environmental and geography considerations, Journal of Transport Geography, 48 (2015), 121-134.
doi: 10.1016/j.jtrangeo.2015.09.005. |
[2] |
S. Agrawal, R. K. Singh and Q. Murtaza,
Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach, Resources, Conservation and Recycling, 108 (2016), 41-53.
doi: 10.1016/j.resconrec.2016.01.004. |
[3] |
F. Altiparmak, M. Gen, L. Lin and T. Paksoy,
A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering, 51 (2006), 196-215.
doi: 10.1016/j.cie.2006.07.011. |
[4] |
J. E. Alvarez-Benitez, R. M. Everson and J. E. Fieldsend,
A MOPSO algorithm based exclusively on pareto dominance concepts, International Conference on Evolutionary Multi-Criterion Optimization, 3410 (2005), 459-473.
doi: 10.1007/978-3-540-31880-4_32. |
[5] |
S. H. Amin and G. Zhang,
A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return, Applied Mathematical Modelling, 37 (2013), 4165-4176.
doi: 10.1016/j.apm.2012.09.039. |
[6] |
A. Aminipour, Z. Bahroun and M. Hariga,
Cyclic manufacturing and remanufacturing in a closed-loop supply chain, Sustainable Production and Consumption, 25 (2021), 43-59.
doi: 10.1016/j.spc.2020.08.002. |
[7] |
J. Asl-Najafi, B. Zahiri, A. Bozorgi-Amiri and A. Taheri-Moghaddam,
A dynamic closed-loop location-inventory problem under disruption risk, Computers & Industrial Engineering, 90 (2015), 414-428.
doi: 10.1016/j.cie.2015.10.012. |
[8] |
E. Babaee Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.-W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, Journal of Cleaner Production, 276 (2020), 122927.
doi: 10.1016/j.jclepro.2020.122927. |
[9] |
S. Barak, M. Yousefi, H. Maghsoudlou and S. Jahangiri,
Energy and GHG emissions management of agricultural systems using multi objective particle swarm optimization algorithm: A case study, Stochastic Environmental Research and Risk Assessment, 30 (2016), 1167-1187.
doi: 10.1007/s00477-015-1098-1. |
[10] |
E. Bazan, M. Y. Jaber and S. Zanoni,
A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling, 40 (2016), 4151-4178.
doi: 10.1016/j.apm.2015.11.027. |
[11] |
E. Bazan, M. Y. Jaber and S. Zanoni,
Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms, International Journal of Production Economics, 183 (2017), 394-408.
doi: 10.1016/j.ijpe.2016.07.009. |
[12] |
T. Blickle, Handbook of Evolutionary Computation, Chapter Tournament Selection, IOP Publishing Ltd, 1997. |
[13] |
A. Bouras and L. Tadj,
Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy, Journal of Industrial & Management Optimization, 11 (2015), 1041-1058.
doi: 10.3934/jimo.2015.11.1041. |
[14] |
N. Boysen and M. Fliedner,
Cross dock scheduling: Classification, literature review and research agenda, Omega, 38 (2010), 413-422.
doi: 10.1016/j.omega.2009.10.008. |
[15] |
G. J. Burke, J. Carrillo and A. J. Vakharia,
Heuristics for sourcing from multiple suppliers with alternative quantity discounts, European Journal of Operational Research, 186 (2008), 317-329.
doi: 10.1016/j.ejor.2007.01.019. |
[16] |
A. Chaabane, A. Ramudhin and M. Paquet,
Design of sustainable supply chains under the emission trading scheme, International Journal of Production Economics, 135 (2012), 37-49.
doi: 10.1016/j.ijpe.2010.10.025. |
[17] |
J.-M. Chen and C.-I. Chang,
The co-opetitive strategy of a closed-loop supply chain with remanufacturing, Transportation Research Part E: Logistics and Transportation Review, 48 (2012), 387-400.
doi: 10.1016/j.tre.2011.10.001. |
[18] |
Y.-W. Chen, L.-C. Wang, A. Wang and T.-L. Chen,
A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry, Robotics and Computer-Integrated Manufacturing, 43 (2017), 111-123.
doi: 10.1016/j.rcim.2015.10.006. |
[19] |
Y.-H. Cheng and F. Lee,
Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan, Industrial Marketing Management, 39 (2010), 1111-1119.
doi: 10.1016/j.indmarman.2009.10.004. |
[20] |
K. Das and N. R. Posinasetti,
Addressing environmental concerns in closed loop supply chain design and planning, International Journal of Production Economics, 163 (2015), 34-47.
doi: 10.1016/j.ijpe.2015.02.012. |
[21] |
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[22] |
K. Devika, A. Jafarian and V. Nourbakhsh,
Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European Journal of Operational Research, 235 (2014), 594-615.
doi: 10.1016/j.ejor.2013.12.032. |
[23] |
J. Dong, L. Jiang, W. Lu and Q. Guo,
Closed-loop supply chain models with product remanufacturing under random demand, Optimization, 70 (2021), 27-53.
doi: 10.1080/02331934.2019.1696341. |
[24] |
F. Du and G. W. Evans,
A bi-objective reverse logistics network analysis for post-sale service, Computers & Operations Research, 35 (2008), 2617-2634.
doi: 10.1016/j.cor.2006.12.020. |
[25] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), 39–43. |
[26] |
T. Efendigil, S. Önüt and E. Kongar,
A holistic approach for selecting a third-party reverse logistics provider in the presence of vagueness, Computers & Industrial Engineering, 54 (2008), 269-287.
doi: 10.1016/j.cie.2007.07.009. |
[27] |
B. Fahimnia, J. Sarkis, F. Dehghanian, N. Banihashemi and S. Rahman,
The impact of carbon pricing on a closed-loop supply chain: An Australian case study, Journal of Cleaner Production, 59 (2013), 210-225.
doi: 10.1016/j.jclepro.2013.06.056. |
[28] |
H. Fallah, H. Eskandari and M. S. Pishvaee,
Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.
doi: 10.1016/j.jmsy.2015.01.005. |
[29] |
M. Fareeduddin, A. Hassan, M. N. Syed and S. Selim,
The impact of carbon policies on closed-loop supply chain network design, Procedia CIRP, 26 (2015), 335-340.
doi: 10.1016/j.procir.2014.07.042. |
[30] |
A. M. Fathollahi-Fard, F. Gholian-Jouybari, M. M. Paydar and M. Hajiaghaei-Keshteli,
A bi-objective stochastic closed-loop supply chain network design problem considering downside risk, Industrial Engineering & Management Systems, 16 (2017), 342-362.
doi: 10.7232/iems.2017.16.3.342. |
[31] |
A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli,
A stochastic multi-objective model for a closed-loop supply chain with environmental considerations, Applied Soft Computing, 69 (2018), 232-249.
doi: 10.1016/j.asoc.2018.04.055. |
[32] |
A. M. FathollahiFard and M. Hajaghaei-Keshteli,
A tri-level location-allocation model for forward/reverse supply chain, Applied Soft Computing, 62 (2018b), 328-346.
doi: 10.1016/j.asoc.2017.11.004. |
[33] |
A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli and S. Mirjalili,
Multi-objective stochastic closed-loop supply chain network design with social considerations, Applied Soft Computing, 71 (2018), 505-525.
doi: 10.1016/j.asoc.2018.07.025. |
[34] |
Z. Feng, T. Xiao and D. J. Robb, Environmentally responsible closed-loop supply chain models with outsourcing and authorization options, Journal of Cleaner Production, 278 (2021), 123791.
doi: 10.1016/j.jclepro.2020.123791. |
[35] |
M. R. Galbreth, J. A. Hill and S. Handley,
An investigation of the value of cross-docking for supply chain management, Journal of Business Logistic, 29 (2008), 225-239.
doi: 10.1002/j.2158-1592.2008.tb00076.x. |
[36] |
H. Gholizadeh and H. Fazlollahtabar, Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry, Computers & Industrial Engineering, 147 (2020), 106653.
doi: 10.1016/j.cie.2020.106653. |
[37] |
M. Ghomi-Avili, S. G. J. Naeini, R. Tavakkoli-Moghaddam and A. Jabbarzadeh,
A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, Journal of Cleaner Production, 188 (2018), 425-442.
doi: 10.1016/j.jclepro.2018.03.273. |
[38] |
A. Goli and S. M. R. Davoodi,
Coordination policy for production and delivery scheduling in the closed loop supply chain, Production Engineering, 12 (2018), 621-631.
doi: 10.1007/s11740-018-0841-0. |
[39] |
A. Goli, E. B. Tirkolaee and G.-W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Operations and Management for Recycling and Reuse, (2020), 99–124.
doi: 10.1007/978-3-642-33857-1_6. |
[40] |
A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam and A. Sadegheih,
Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.
doi: 10.1111/coin.12228. |
[41] |
P. Guarnieri, V. A. Sobreiro, M. S. Nagano and A. L. M. Serrano,
The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: A Brazilian case, Journal of Cleaner Production, 96 (2015), 209-219.
doi: 10.1016/j.jclepro.2014.05.040. |
[42] |
X. Hong, L. Xu, P. Du and W. Wang,
Joint advertising, pricing and collection decisions in a closed-loop supply chain, International Journal of Production Economics, 167 (2015), 12-22.
doi: 10.1016/j.ijpe.2015.05.001. |
[43] |
Z.-H. Hu, J.-B. Sheu, L. Zhao and C.-C. Lu,
A dynamic closed-loop vehicle routing problem with uncertainty and incompatible goods, Transportation Research Part C: Emerging Technologies, 55 (2015), 273-297.
doi: 10.1016/j.trc.2015.01.010. |
[44] |
H. Huang, Y. He and D. Li,
Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration, Journal of Cleaner Production, 180 (2018), 280-296.
doi: 10.1016/j.jclepro.2018.01.152. |
[45] |
N. Karimi, M. Zandieh and H. R. Karamooz,
Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach, Expert Systems with Applications, 37 (2010), 4024-4032.
doi: 10.1016/j.eswa.2009.09.005. |
[46] |
S. Kassem and M. Chen,
Solving reverse logistics vehicle routing problems with time windows, The International Journal of Advanced Manufacturing Technology, 68 (2013), 57-68.
doi: 10.1007/s00170-012-4708-9. |
[47] |
O. Kaya and B. Urek,
A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain, Computers & Operations Research, 65 (2016), 93-103.
doi: 10.1016/j.cor.2015.07.005. |
[48] |
A. Kheirkhah and S. Rezaei,
Using cross-docking operations in a reverse logistics network design: A new approach, Production Engineering, 10 (2016), 175-184.
doi: 10.1007/s11740-015-0646-3. |
[49] |
H. Kim, J. Yang and K.-D. Lee,
Vehicle routing in reverse logistics for recycling end-of-life consumer electronic goods in South Korea, Transportation Research Part D: Transport and Environment, 14 (2009), 291-299.
doi: 10.1016/j.trd.2009.03.001. |
[50] |
H. J. Ko and G. W. Evans,
A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers & Operations Research, 34 (2007), 346-366.
doi: 10.1016/j.cor.2005.03.004. |
[51] |
J. Krarup and P. M. Pruzan,
The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.
doi: 10.1016/0377-2217(83)90181-9. |
[52] |
L. Kroon and G. Vrijens,
Returnable containers: An example of reverse logistics, International Journal of Physical Distribution & Logistics Management, 25 (1995), 56-68.
doi: 10.1108/09600039510083934. |
[53] |
K. Lieckens and N. Vandaele,
Reverse logistics network design with stochastic lead times, Computers & Operations Research, 34 (2007), 395-416.
doi: 10.1016/j.cor.2005.03.006. |
[54] |
R. Ma, L. Yao, M. Jin, P. Ren and Z. Lv,
Robust environmental closed-loop supply chain design under uncertainty, Chaos, Solitons & Fractals, 89 (2016), 195-202.
doi: 10.1016/j.chaos.2015.10.028. |
[55] |
H. Maghsoudlou, M. R. Kahag, S. T. A. Niaki and H. Pourvaziri,
Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution, Computers & Industrial Engineering, 99 (2016), 41-62.
doi: 10.1016/j.cie.2016.07.008. |
[56] |
M. Mahmoudzadeh, S. J. Sadjadi and S. Mansour,
Robust optimal dynamic production/pricing policies in a closed-loop system, Applied Mathematical Modelling, 37 (2013), 8141-8161.
doi: 10.1016/j.apm.2013.03.008. |
[57] |
B. K. Mawandiya, J. K. Jha and J. Thakkar,
Production-inventory model for two-echelon closed-loop supply chain with finite manufacturing and remanufacturing rates, International Journal of Systems Science: Operations & Logistics, 4 (2017), 199-218.
doi: 10.1080/23302674.2015.1121303. |
[58] |
L. Meade and J. Sarkis,
A conceptual model for selecting and evaluating third-party reverse logistics providers, Supply Chain Management: An International Journal, 7 (2002), 283-295.
doi: 10.1108/13598540210447728. |
[59] |
H. Min and H.-J. Ko,
The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers, International Journal of Production Economics, 113 (2008), 176-192.
doi: 10.1016/j.ijpe.2007.01.017. |
[60] |
S. Mitra,
Inventory management in a two-echelon closed-loop supply chain with correlated demands and returns, Computers & Industrial Engineering, 62 (2012), 870-879.
doi: 10.1016/j.cie.2011.12.008. |
[61] |
B. Mohamadpour Tosarkani and S. Hassanzadeh Amin,
An environmental optimization model to configure a hybrid forward and reverse supply chain network under uncertainty, Computers & Chemical Engineering, 121 (2019), 540-555.
doi: 10.1016/j.compchemeng.2018.11.014. |
[62] |
A. Mohtashami, M. Tavana, F. J. Santos-Arteaga and A. Fallahian-Najafabadi,
A novel multi-objective meta-heuristic model for solving cross-docking scheduling problems, Applied Soft Computing, 31 (2015), 30-47.
doi: 10.1016/j.asoc.2015.02.030. |
[63] |
Z. Mohtashami, A. Aghsami and F. Jolai, A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption, Journal of Cleaner Production, 242 (2010), 118452.
doi: 10.1016/j.jclepro.2019.118452. |
[64] |
H. Moradi, M. Zandieh and I. Mahdavi,
Non-dominated ranked genetic algorithm for a multi-objective mixed-model assembly line sequencing problem, International Journal of Production Research, 49 (2011), 3479-3499.
doi: 10.1080/00207540903433882. |
[65] |
S. Nayeri, M. M. Paydar, E. Asadi-Gangraj and S. Emami, Multi-objective fuzzy robust optimization approach to sustainable closed-loop supply chain network design, Computers & Industrial Engineering, 148 (2020), 106716.
doi: 10.1016/j.cie.2020.106716. |
[66] |
K. Pant, V. S. Yadav and A. Singh,
Design of multi-tier multi-time horizon closed-loop supply chain network with sustainability under uncertain environment for Indian paper industry, International Journal of Sustainable Engineering, 14 (2020), 107-122.
doi: 10.1080/19397038.2020.1774817. |
[67] |
S. Pazhani, N. Ramkumar, T. T. Narendran and K. Ganesh,
A bi-objective network design model for multi-period, multi-product closed-loop supply chain, Journal of Industrial and Production Engineering, 30 (2013), 264-280.
doi: 10.1080/21681015.2013.830648. |
[68] |
M. S. Pishvaee, R. Z. Farahani and W. Dullaert,
A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Computers & Operations Research, 37 (2010), 1100-1112.
doi: 10.1016/j.cor.2009.09.018. |
[69] |
M. S. Pishvaee and J. Razmi,
Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.
doi: 10.1016/j.apm.2011.10.007. |
[70] |
S. H. A. Rahmati, M. Zandieh and M. Yazdani,
Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem, The International Journal of Advanced Manufacturing Technology, 64 (2013), 915-932.
doi: 10.1007/s00170-012-4051-1. |
[71] |
Y. Ranjbar, H. Sahebi, J. Ashayeri and A. Teymouri, A competitive dual recycling channel in a three-level closed loop supply chain under different power structures: Pricing and collecting decisions, Journal of Cleaner Production, 272 (2020), 122623.
doi: 10.1016/j.jclepro.2020.122623. |
[72] |
S. Rezaei and A. Kheirkhah,
A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations, Computational and Mathematical Organization Theory, 24 (2018), 51-98.
doi: 10.1007/s10588-017-9247-3. |
[73] |
S. Rezapour, R. Z. Farahani, B. Fahimnia, K. Govindan and Y. Mansouri,
Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93 (2015), 251-272.
doi: 10.1016/j.jclepro.2014.12.095. |
[74] |
Y. M. B. Saavedra, A. P. B. Barquet, H. Rozenfeld, F. A. Forcellini and A. R. Ometto,
Remanufacturing in Brazil: Case studies on the automotive sector, Journal of Cleaner Production, 53 (2013), 267-276.
doi: 10.1016/j.jclepro.2013.03.038. |
[75] |
R. Sadeghi Rad and N. Nahavandi,
A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount, Journal of Cleaner Production, 196 (2018), 1549-1565.
doi: 10.1016/j.jclepro.2018.06.034. |
[76] |
N. Sahebjamnia, A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli,
Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks, Journal of Cleaner Production, 196 (2018), 273-296.
doi: 10.1016/j.jclepro.2018.05.245. |
[77] |
M. Saidi Mehrabad, A. Aazami and A. Goli,
A location-allocation model in the multi-level supply chain with multi-objective evolutionary approach, Journal of Industrial and Systems Engineering, 10 (2017), 140-160.
|
[78] |
J. R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Master's thesis, Massachusetts Institute of Technology, Cambridge, 1995. |
[79] |
A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003. |
[80] |
F. Sgarbossa and I. Russo,
A proactive model in sustainable food supply chain: Insight from a case study, International Journal of Production Economics, 183 (2017), 596-606.
doi: 10.1016/j.ijpe.2016.07.022. |
[81] |
D. Y. Sha and C.-Y. Hsu,
A new particle swarm optimization for the open shop scheduling problem, Computers & Operations Research, 35 (2008), 3243-3261.
doi: 10.1016/j.cor.2007.02.019. |
[82] |
J. Shi, G. Zhang and J. Sha,
Optimal production planning for a multi-product closed loop system with uncertain demand and return, Computers & Operations Research, 38 (2011), 641-650.
doi: 10.1016/j.cor.2010.08.008. |
[83] |
Th. Spengler, H. Püchert, T. Penkuhn and O. Rentz,
Environmental integrated production and recycling management, European Journal of Operational Research, 97 (1997), 308-326.
doi: 10.1007/978-3-642-17036-2_22. |
[84] |
G. Taguchi, Introduction to Quality Engineering: Designing Quality Into Products and Processes, Asian Productivity Organization, Tokyo, 1986. |
[85] |
M. Talaei, B. F. Moghaddam, M. S. Pishvaee, A. Bozorgi-Amiri and S. Gholamnejad,
A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry, Journal of Cleaner Production, 113 (2016), 662-673.
doi: 10.1016/j.jclepro.2015.10.074. |
[86] |
A. A. Taleizadeh, F. Haghighi and S. T. A. Niaki,
Modeling and solving a sustainable closed loop supply chain problem with pricing decisions and discounts on returned products, Journal of Cleaner Production, 207 (2019), 163-181.
doi: 10.1016/j.jclepro.2018.09.198. |
[87] |
Z. G. Tao, Z. Y. Guang, S. Hao, H. J. Song and D. G. Xin, Multi-period closed-loop supply chain network equilibrium with carbon emission constraints, Resources, Conservation and Recycling, 104 (2015), 354–365.
doi: 10.1016/j.resconrec.2015.07.016. |
[88] |
S. A. Torabi and E. Hassini,
An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[89] |
B. Vahdani and M. Mohammadi,
A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system, International Journal of Production Economics, 170 (2015), 67-87.
doi: 10.1016/j.ijpe.2015.08.020. |
[90] |
V. P. Vinay and R. Sridharan,
Taguchi method for parameter design in ACO algorithm for distribution-allocation in a two-stage supply chain, The International Journal of Advanced Manufacturing Technology, 64 (2013), 1333-1343.
doi: 10.1007/s00170-012-4104-5. |
[91] |
N. Zarbakhshnia, H. Soleimani and H. Ghaderi,
Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria, Applied Soft Computing, 65 (2018), 307-319.
doi: 10.1016/j.asoc.2018.01.023. |
[92] |
M. Zhalechian, R. Tavakkoli-Moghaddam, B. Zahiri and M. Mohammadi,
Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty, Transportation Research Part E: Logistics and Transportation Review, 89 (2016), 182-214.
doi: 10.1016/j.tre.2016.02.011. |
[93] |
M. Zohal and H. Soleimani,
Developing an ant colony approach for green closed-loop supply chain network design: A case study in gold industry, Journal of Cleaner Production, 133 (2016), 314-337.
doi: 10.1016/j.jclepro.2016.05.091. |
[94] |
J. P. S. Zuluaga, M. Thiell and R. C. Perales,
Reverse cross-docking, Omega, 66 (2017), 48-57.
doi: 10.1016/j.omega.2016.01.010. |
show all references
References:
[1] |
R. Accorsi, R. Manzini, C. Pini and S. Penazzi,
On the design of closed-loop networks for product life cycle management: Economic, environmental and geography considerations, Journal of Transport Geography, 48 (2015), 121-134.
doi: 10.1016/j.jtrangeo.2015.09.005. |
[2] |
S. Agrawal, R. K. Singh and Q. Murtaza,
Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach, Resources, Conservation and Recycling, 108 (2016), 41-53.
doi: 10.1016/j.resconrec.2016.01.004. |
[3] |
F. Altiparmak, M. Gen, L. Lin and T. Paksoy,
A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering, 51 (2006), 196-215.
doi: 10.1016/j.cie.2006.07.011. |
[4] |
J. E. Alvarez-Benitez, R. M. Everson and J. E. Fieldsend,
A MOPSO algorithm based exclusively on pareto dominance concepts, International Conference on Evolutionary Multi-Criterion Optimization, 3410 (2005), 459-473.
doi: 10.1007/978-3-540-31880-4_32. |
[5] |
S. H. Amin and G. Zhang,
A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return, Applied Mathematical Modelling, 37 (2013), 4165-4176.
doi: 10.1016/j.apm.2012.09.039. |
[6] |
A. Aminipour, Z. Bahroun and M. Hariga,
Cyclic manufacturing and remanufacturing in a closed-loop supply chain, Sustainable Production and Consumption, 25 (2021), 43-59.
doi: 10.1016/j.spc.2020.08.002. |
[7] |
J. Asl-Najafi, B. Zahiri, A. Bozorgi-Amiri and A. Taheri-Moghaddam,
A dynamic closed-loop location-inventory problem under disruption risk, Computers & Industrial Engineering, 90 (2015), 414-428.
doi: 10.1016/j.cie.2015.10.012. |
[8] |
E. Babaee Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.-W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, Journal of Cleaner Production, 276 (2020), 122927.
doi: 10.1016/j.jclepro.2020.122927. |
[9] |
S. Barak, M. Yousefi, H. Maghsoudlou and S. Jahangiri,
Energy and GHG emissions management of agricultural systems using multi objective particle swarm optimization algorithm: A case study, Stochastic Environmental Research and Risk Assessment, 30 (2016), 1167-1187.
doi: 10.1007/s00477-015-1098-1. |
[10] |
E. Bazan, M. Y. Jaber and S. Zanoni,
A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling, 40 (2016), 4151-4178.
doi: 10.1016/j.apm.2015.11.027. |
[11] |
E. Bazan, M. Y. Jaber and S. Zanoni,
Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms, International Journal of Production Economics, 183 (2017), 394-408.
doi: 10.1016/j.ijpe.2016.07.009. |
[12] |
T. Blickle, Handbook of Evolutionary Computation, Chapter Tournament Selection, IOP Publishing Ltd, 1997. |
[13] |
A. Bouras and L. Tadj,
Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy, Journal of Industrial & Management Optimization, 11 (2015), 1041-1058.
doi: 10.3934/jimo.2015.11.1041. |
[14] |
N. Boysen and M. Fliedner,
Cross dock scheduling: Classification, literature review and research agenda, Omega, 38 (2010), 413-422.
doi: 10.1016/j.omega.2009.10.008. |
[15] |
G. J. Burke, J. Carrillo and A. J. Vakharia,
Heuristics for sourcing from multiple suppliers with alternative quantity discounts, European Journal of Operational Research, 186 (2008), 317-329.
doi: 10.1016/j.ejor.2007.01.019. |
[16] |
A. Chaabane, A. Ramudhin and M. Paquet,
Design of sustainable supply chains under the emission trading scheme, International Journal of Production Economics, 135 (2012), 37-49.
doi: 10.1016/j.ijpe.2010.10.025. |
[17] |
J.-M. Chen and C.-I. Chang,
The co-opetitive strategy of a closed-loop supply chain with remanufacturing, Transportation Research Part E: Logistics and Transportation Review, 48 (2012), 387-400.
doi: 10.1016/j.tre.2011.10.001. |
[18] |
Y.-W. Chen, L.-C. Wang, A. Wang and T.-L. Chen,
A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry, Robotics and Computer-Integrated Manufacturing, 43 (2017), 111-123.
doi: 10.1016/j.rcim.2015.10.006. |
[19] |
Y.-H. Cheng and F. Lee,
Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan, Industrial Marketing Management, 39 (2010), 1111-1119.
doi: 10.1016/j.indmarman.2009.10.004. |
[20] |
K. Das and N. R. Posinasetti,
Addressing environmental concerns in closed loop supply chain design and planning, International Journal of Production Economics, 163 (2015), 34-47.
doi: 10.1016/j.ijpe.2015.02.012. |
[21] |
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[22] |
K. Devika, A. Jafarian and V. Nourbakhsh,
Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European Journal of Operational Research, 235 (2014), 594-615.
doi: 10.1016/j.ejor.2013.12.032. |
[23] |
J. Dong, L. Jiang, W. Lu and Q. Guo,
Closed-loop supply chain models with product remanufacturing under random demand, Optimization, 70 (2021), 27-53.
doi: 10.1080/02331934.2019.1696341. |
[24] |
F. Du and G. W. Evans,
A bi-objective reverse logistics network analysis for post-sale service, Computers & Operations Research, 35 (2008), 2617-2634.
doi: 10.1016/j.cor.2006.12.020. |
[25] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), 39–43. |
[26] |
T. Efendigil, S. Önüt and E. Kongar,
A holistic approach for selecting a third-party reverse logistics provider in the presence of vagueness, Computers & Industrial Engineering, 54 (2008), 269-287.
doi: 10.1016/j.cie.2007.07.009. |
[27] |
B. Fahimnia, J. Sarkis, F. Dehghanian, N. Banihashemi and S. Rahman,
The impact of carbon pricing on a closed-loop supply chain: An Australian case study, Journal of Cleaner Production, 59 (2013), 210-225.
doi: 10.1016/j.jclepro.2013.06.056. |
[28] |
H. Fallah, H. Eskandari and M. S. Pishvaee,
Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.
doi: 10.1016/j.jmsy.2015.01.005. |
[29] |
M. Fareeduddin, A. Hassan, M. N. Syed and S. Selim,
The impact of carbon policies on closed-loop supply chain network design, Procedia CIRP, 26 (2015), 335-340.
doi: 10.1016/j.procir.2014.07.042. |
[30] |
A. M. Fathollahi-Fard, F. Gholian-Jouybari, M. M. Paydar and M. Hajiaghaei-Keshteli,
A bi-objective stochastic closed-loop supply chain network design problem considering downside risk, Industrial Engineering & Management Systems, 16 (2017), 342-362.
doi: 10.7232/iems.2017.16.3.342. |
[31] |
A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli,
A stochastic multi-objective model for a closed-loop supply chain with environmental considerations, Applied Soft Computing, 69 (2018), 232-249.
doi: 10.1016/j.asoc.2018.04.055. |
[32] |
A. M. FathollahiFard and M. Hajaghaei-Keshteli,
A tri-level location-allocation model for forward/reverse supply chain, Applied Soft Computing, 62 (2018b), 328-346.
doi: 10.1016/j.asoc.2017.11.004. |
[33] |
A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli and S. Mirjalili,
Multi-objective stochastic closed-loop supply chain network design with social considerations, Applied Soft Computing, 71 (2018), 505-525.
doi: 10.1016/j.asoc.2018.07.025. |
[34] |
Z. Feng, T. Xiao and D. J. Robb, Environmentally responsible closed-loop supply chain models with outsourcing and authorization options, Journal of Cleaner Production, 278 (2021), 123791.
doi: 10.1016/j.jclepro.2020.123791. |
[35] |
M. R. Galbreth, J. A. Hill and S. Handley,
An investigation of the value of cross-docking for supply chain management, Journal of Business Logistic, 29 (2008), 225-239.
doi: 10.1002/j.2158-1592.2008.tb00076.x. |
[36] |
H. Gholizadeh and H. Fazlollahtabar, Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry, Computers & Industrial Engineering, 147 (2020), 106653.
doi: 10.1016/j.cie.2020.106653. |
[37] |
M. Ghomi-Avili, S. G. J. Naeini, R. Tavakkoli-Moghaddam and A. Jabbarzadeh,
A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, Journal of Cleaner Production, 188 (2018), 425-442.
doi: 10.1016/j.jclepro.2018.03.273. |
[38] |
A. Goli and S. M. R. Davoodi,
Coordination policy for production and delivery scheduling in the closed loop supply chain, Production Engineering, 12 (2018), 621-631.
doi: 10.1007/s11740-018-0841-0. |
[39] |
A. Goli, E. B. Tirkolaee and G.-W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Operations and Management for Recycling and Reuse, (2020), 99–124.
doi: 10.1007/978-3-642-33857-1_6. |
[40] |
A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam and A. Sadegheih,
Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.
doi: 10.1111/coin.12228. |
[41] |
P. Guarnieri, V. A. Sobreiro, M. S. Nagano and A. L. M. Serrano,
The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: A Brazilian case, Journal of Cleaner Production, 96 (2015), 209-219.
doi: 10.1016/j.jclepro.2014.05.040. |
[42] |
X. Hong, L. Xu, P. Du and W. Wang,
Joint advertising, pricing and collection decisions in a closed-loop supply chain, International Journal of Production Economics, 167 (2015), 12-22.
doi: 10.1016/j.ijpe.2015.05.001. |
[43] |
Z.-H. Hu, J.-B. Sheu, L. Zhao and C.-C. Lu,
A dynamic closed-loop vehicle routing problem with uncertainty and incompatible goods, Transportation Research Part C: Emerging Technologies, 55 (2015), 273-297.
doi: 10.1016/j.trc.2015.01.010. |
[44] |
H. Huang, Y. He and D. Li,
Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration, Journal of Cleaner Production, 180 (2018), 280-296.
doi: 10.1016/j.jclepro.2018.01.152. |
[45] |
N. Karimi, M. Zandieh and H. R. Karamooz,
Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach, Expert Systems with Applications, 37 (2010), 4024-4032.
doi: 10.1016/j.eswa.2009.09.005. |
[46] |
S. Kassem and M. Chen,
Solving reverse logistics vehicle routing problems with time windows, The International Journal of Advanced Manufacturing Technology, 68 (2013), 57-68.
doi: 10.1007/s00170-012-4708-9. |
[47] |
O. Kaya and B. Urek,
A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain, Computers & Operations Research, 65 (2016), 93-103.
doi: 10.1016/j.cor.2015.07.005. |
[48] |
A. Kheirkhah and S. Rezaei,
Using cross-docking operations in a reverse logistics network design: A new approach, Production Engineering, 10 (2016), 175-184.
doi: 10.1007/s11740-015-0646-3. |
[49] |
H. Kim, J. Yang and K.-D. Lee,
Vehicle routing in reverse logistics for recycling end-of-life consumer electronic goods in South Korea, Transportation Research Part D: Transport and Environment, 14 (2009), 291-299.
doi: 10.1016/j.trd.2009.03.001. |
[50] |
H. J. Ko and G. W. Evans,
A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers & Operations Research, 34 (2007), 346-366.
doi: 10.1016/j.cor.2005.03.004. |
[51] |
J. Krarup and P. M. Pruzan,
The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.
doi: 10.1016/0377-2217(83)90181-9. |
[52] |
L. Kroon and G. Vrijens,
Returnable containers: An example of reverse logistics, International Journal of Physical Distribution & Logistics Management, 25 (1995), 56-68.
doi: 10.1108/09600039510083934. |
[53] |
K. Lieckens and N. Vandaele,
Reverse logistics network design with stochastic lead times, Computers & Operations Research, 34 (2007), 395-416.
doi: 10.1016/j.cor.2005.03.006. |
[54] |
R. Ma, L. Yao, M. Jin, P. Ren and Z. Lv,
Robust environmental closed-loop supply chain design under uncertainty, Chaos, Solitons & Fractals, 89 (2016), 195-202.
doi: 10.1016/j.chaos.2015.10.028. |
[55] |
H. Maghsoudlou, M. R. Kahag, S. T. A. Niaki and H. Pourvaziri,
Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution, Computers & Industrial Engineering, 99 (2016), 41-62.
doi: 10.1016/j.cie.2016.07.008. |
[56] |
M. Mahmoudzadeh, S. J. Sadjadi and S. Mansour,
Robust optimal dynamic production/pricing policies in a closed-loop system, Applied Mathematical Modelling, 37 (2013), 8141-8161.
doi: 10.1016/j.apm.2013.03.008. |
[57] |
B. K. Mawandiya, J. K. Jha and J. Thakkar,
Production-inventory model for two-echelon closed-loop supply chain with finite manufacturing and remanufacturing rates, International Journal of Systems Science: Operations & Logistics, 4 (2017), 199-218.
doi: 10.1080/23302674.2015.1121303. |
[58] |
L. Meade and J. Sarkis,
A conceptual model for selecting and evaluating third-party reverse logistics providers, Supply Chain Management: An International Journal, 7 (2002), 283-295.
doi: 10.1108/13598540210447728. |
[59] |
H. Min and H.-J. Ko,
The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers, International Journal of Production Economics, 113 (2008), 176-192.
doi: 10.1016/j.ijpe.2007.01.017. |
[60] |
S. Mitra,
Inventory management in a two-echelon closed-loop supply chain with correlated demands and returns, Computers & Industrial Engineering, 62 (2012), 870-879.
doi: 10.1016/j.cie.2011.12.008. |
[61] |
B. Mohamadpour Tosarkani and S. Hassanzadeh Amin,
An environmental optimization model to configure a hybrid forward and reverse supply chain network under uncertainty, Computers & Chemical Engineering, 121 (2019), 540-555.
doi: 10.1016/j.compchemeng.2018.11.014. |
[62] |
A. Mohtashami, M. Tavana, F. J. Santos-Arteaga and A. Fallahian-Najafabadi,
A novel multi-objective meta-heuristic model for solving cross-docking scheduling problems, Applied Soft Computing, 31 (2015), 30-47.
doi: 10.1016/j.asoc.2015.02.030. |
[63] |
Z. Mohtashami, A. Aghsami and F. Jolai, A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption, Journal of Cleaner Production, 242 (2010), 118452.
doi: 10.1016/j.jclepro.2019.118452. |
[64] |
H. Moradi, M. Zandieh and I. Mahdavi,
Non-dominated ranked genetic algorithm for a multi-objective mixed-model assembly line sequencing problem, International Journal of Production Research, 49 (2011), 3479-3499.
doi: 10.1080/00207540903433882. |
[65] |
S. Nayeri, M. M. Paydar, E. Asadi-Gangraj and S. Emami, Multi-objective fuzzy robust optimization approach to sustainable closed-loop supply chain network design, Computers & Industrial Engineering, 148 (2020), 106716.
doi: 10.1016/j.cie.2020.106716. |
[66] |
K. Pant, V. S. Yadav and A. Singh,
Design of multi-tier multi-time horizon closed-loop supply chain network with sustainability under uncertain environment for Indian paper industry, International Journal of Sustainable Engineering, 14 (2020), 107-122.
doi: 10.1080/19397038.2020.1774817. |
[67] |
S. Pazhani, N. Ramkumar, T. T. Narendran and K. Ganesh,
A bi-objective network design model for multi-period, multi-product closed-loop supply chain, Journal of Industrial and Production Engineering, 30 (2013), 264-280.
doi: 10.1080/21681015.2013.830648. |
[68] |
M. S. Pishvaee, R. Z. Farahani and W. Dullaert,
A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Computers & Operations Research, 37 (2010), 1100-1112.
doi: 10.1016/j.cor.2009.09.018. |
[69] |
M. S. Pishvaee and J. Razmi,
Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.
doi: 10.1016/j.apm.2011.10.007. |
[70] |
S. H. A. Rahmati, M. Zandieh and M. Yazdani,
Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem, The International Journal of Advanced Manufacturing Technology, 64 (2013), 915-932.
doi: 10.1007/s00170-012-4051-1. |
[71] |
Y. Ranjbar, H. Sahebi, J. Ashayeri and A. Teymouri, A competitive dual recycling channel in a three-level closed loop supply chain under different power structures: Pricing and collecting decisions, Journal of Cleaner Production, 272 (2020), 122623.
doi: 10.1016/j.jclepro.2020.122623. |
[72] |
S. Rezaei and A. Kheirkhah,
A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations, Computational and Mathematical Organization Theory, 24 (2018), 51-98.
doi: 10.1007/s10588-017-9247-3. |
[73] |
S. Rezapour, R. Z. Farahani, B. Fahimnia, K. Govindan and Y. Mansouri,
Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93 (2015), 251-272.
doi: 10.1016/j.jclepro.2014.12.095. |
[74] |
Y. M. B. Saavedra, A. P. B. Barquet, H. Rozenfeld, F. A. Forcellini and A. R. Ometto,
Remanufacturing in Brazil: Case studies on the automotive sector, Journal of Cleaner Production, 53 (2013), 267-276.
doi: 10.1016/j.jclepro.2013.03.038. |
[75] |
R. Sadeghi Rad and N. Nahavandi,
A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount, Journal of Cleaner Production, 196 (2018), 1549-1565.
doi: 10.1016/j.jclepro.2018.06.034. |
[76] |
N. Sahebjamnia, A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli,
Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks, Journal of Cleaner Production, 196 (2018), 273-296.
doi: 10.1016/j.jclepro.2018.05.245. |
[77] |
M. Saidi Mehrabad, A. Aazami and A. Goli,
A location-allocation model in the multi-level supply chain with multi-objective evolutionary approach, Journal of Industrial and Systems Engineering, 10 (2017), 140-160.
|
[78] |
J. R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Master's thesis, Massachusetts Institute of Technology, Cambridge, 1995. |
[79] |
A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003. |
[80] |
F. Sgarbossa and I. Russo,
A proactive model in sustainable food supply chain: Insight from a case study, International Journal of Production Economics, 183 (2017), 596-606.
doi: 10.1016/j.ijpe.2016.07.022. |
[81] |
D. Y. Sha and C.-Y. Hsu,
A new particle swarm optimization for the open shop scheduling problem, Computers & Operations Research, 35 (2008), 3243-3261.
doi: 10.1016/j.cor.2007.02.019. |
[82] |
J. Shi, G. Zhang and J. Sha,
Optimal production planning for a multi-product closed loop system with uncertain demand and return, Computers & Operations Research, 38 (2011), 641-650.
doi: 10.1016/j.cor.2010.08.008. |
[83] |
Th. Spengler, H. Püchert, T. Penkuhn and O. Rentz,
Environmental integrated production and recycling management, European Journal of Operational Research, 97 (1997), 308-326.
doi: 10.1007/978-3-642-17036-2_22. |
[84] |
G. Taguchi, Introduction to Quality Engineering: Designing Quality Into Products and Processes, Asian Productivity Organization, Tokyo, 1986. |
[85] |
M. Talaei, B. F. Moghaddam, M. S. Pishvaee, A. Bozorgi-Amiri and S. Gholamnejad,
A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry, Journal of Cleaner Production, 113 (2016), 662-673.
doi: 10.1016/j.jclepro.2015.10.074. |
[86] |
A. A. Taleizadeh, F. Haghighi and S. T. A. Niaki,
Modeling and solving a sustainable closed loop supply chain problem with pricing decisions and discounts on returned products, Journal of Cleaner Production, 207 (2019), 163-181.
doi: 10.1016/j.jclepro.2018.09.198. |
[87] |
Z. G. Tao, Z. Y. Guang, S. Hao, H. J. Song and D. G. Xin, Multi-period closed-loop supply chain network equilibrium with carbon emission constraints, Resources, Conservation and Recycling, 104 (2015), 354–365.
doi: 10.1016/j.resconrec.2015.07.016. |
[88] |
S. A. Torabi and E. Hassini,
An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[89] |
B. Vahdani and M. Mohammadi,
A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system, International Journal of Production Economics, 170 (2015), 67-87.
doi: 10.1016/j.ijpe.2015.08.020. |
[90] |
V. P. Vinay and R. Sridharan,
Taguchi method for parameter design in ACO algorithm for distribution-allocation in a two-stage supply chain, The International Journal of Advanced Manufacturing Technology, 64 (2013), 1333-1343.
doi: 10.1007/s00170-012-4104-5. |
[91] |
N. Zarbakhshnia, H. Soleimani and H. Ghaderi,
Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria, Applied Soft Computing, 65 (2018), 307-319.
doi: 10.1016/j.asoc.2018.01.023. |
[92] |
M. Zhalechian, R. Tavakkoli-Moghaddam, B. Zahiri and M. Mohammadi,
Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty, Transportation Research Part E: Logistics and Transportation Review, 89 (2016), 182-214.
doi: 10.1016/j.tre.2016.02.011. |
[93] |
M. Zohal and H. Soleimani,
Developing an ant colony approach for green closed-loop supply chain network design: A case study in gold industry, Journal of Cleaner Production, 133 (2016), 314-337.
doi: 10.1016/j.jclepro.2016.05.091. |
[94] |
J. P. S. Zuluaga, M. Thiell and R. C. Perales,
Reverse cross-docking, Omega, 66 (2017), 48-57.
doi: 10.1016/j.omega.2016.01.010. |










Reference | Model Characteristics | Decision variables | Objective | Method | ||||||||
Flow | Hybrid fac. | Period | Product | Out. | Disc. | Cross. | Example | No. | Des. | |||
[50] | CLSC | Yes | Mu | Mu | Yes | No | No | Test problem | Loc/Alloc | Si | LINGO software, Metaheuristic | |
[59] | CLSC | No | Mu | Mu | Yes | No | No | Test problem | Loc/Alloc | Si | LINGO software, Metaheuristic | |
[24] | CLSC | No | Si | Mu | Yes | No | No | Test problem | Loc/Alloc | Mu | Scatter search, Dual simplex, |
|
[68] | CLSC | No | Si | Si | No | No | No | Test problem | Loc/Alloc | Mu | Metaheuristics | |
[67] | CLSC | Yes | Mu | Mu | No | No | No | an office document company | Loc/Alloc/Inv | Mu | Goal programming, Compromise programming | |
[5] | CLSC | No | Si | Mu | No | No | No | Copier remanufacturing | Loc/Alloc | Mu | Weighted sums, |
|
[22] | CLSC | No | Si | Si | No | No | No | Test problem | Loc/Alloc | Mu | GAMS software, Metaheuristics | |
[7] | CLSC | No | Mu | Mu | No | No | No | Refrigerator industry | Loc/Alloc/Inv | Mu | ||
[20] | CLSC | Yes | Si | Mu | No | No | No | Test problem | Loc/Alloc | Mu | LINGO software, Goal programming | |
[89] | CLSC | Yes | Si | Mu | No | No | No | Test problem | Loc/Alloc | Mu | Interval-stochastic, robust optimization, Metaheuristic, Lower bound procedure, GAMS software | |
[48] | RL | No | Si | Mu | No | No | Yes | Test problem | Loc/Alloc | Si | GAMS software | |
[93] | CLSC | No | Si | Si | No | No | No | Gold industry | Loc/Alloc | Mu | LINGO software, Metaheuristic | |
[54] | CLSC | No | Si | Mu | No | No | No | Test problem | Loc/Alloc | Mu | LINGO software, LP-metrics | |
[85] | CLSC | No | Si | Mu | No | No | No | Copiers industry | Loc/Alloc | Mu | ||
[92] | CLSC | No | Mu | Mu | No | No | No | LCD and LED TV | Loc/Alloc/ Route/Inv | Mu | stochastic-possibilistic programming, modified game theory, lower bound procedure, GAMS software, Hybrid metaheuristic | |
[18] | CLSC | No | Si | Si | No | No | No | Solar cell industry | Loc/Alloc | Mu | branch & bound, CPLEX software, Metaheuristic | |
[94] | RL | No | Si | Mu | No | No | Yes | Test problem | Alloc | Si | CPLEX software | |
[37] | CLSC | No | Mu | Si | Yes | No | No | Filter | Loc/Alloc/SS/Inv/Price | Mu | Karush–Kuhn–Tucker, conditions possibilistic method, |
|
[75] | CLSC | Yes | Mu | Mu | No | Yes | No | Test problem | Loc/Alloc/SS | Mu | CPLEX software, LP-metrics | |
[72] | CLSC | No | Si | Si | No | No | Yes | Test problem | Loc/Alloc | Mu | GAMS software, Metaheuristics | |
[40] | CLSC | Yes | Mu | Mu | No | No | No | Test problem | Loc/Alloc/Inv | Mu | ||
[61] | CLSC | No | Mu | Mu | Yes | No | No | Battery | Loc/Alloc/TPS | Mu | Fully fuzzy stochastic programming | |
[86] | CLSC | No | Mu | Si | No | Yes | No | CFL light bulb | Alloc/Inv/Price | Mu | Fuzzy TH approach [88] | |
[65] | CLSC | No | Si | Mu | No | No | No | Tanker industry | Loc/Alloc/SS | Mu | Multi-choice goal programming with utility function | |
[66] | CLSC | No | Mu | Si | No | No | No | Test problem | Loc/Alloc | Mu | MATLAB software | |
This paper | CLSC | Yes | Mu | Mu | Yes | Yes | Yes | Test problem | Loc/Alloc/TPS | Mu | ||
Notes: fac. (facility); Out. (outsource); Disc. (discount); Cross. (cross-dock); Des. (description); RL (reverse logistic); CLSC (closed loop supply chain); Si (single); Mu (multi); Loc (location); Alloc (allocation); Inv (inventory); Route (routing); SS (supplier selection); TPS (third party selection); Price (pricing) |
Reference | Model Characteristics | Decision variables | Objective | Method | ||||||||
Flow | Hybrid fac. | Period | Product | Out. | Disc. | Cross. | Example | No. | Des. | |||
[50] | CLSC | Yes | Mu | Mu | Yes | No | No | Test problem | Loc/Alloc | Si | LINGO software, Metaheuristic | |
[59] | CLSC | No | Mu | Mu | Yes | No | No | Test problem | Loc/Alloc | Si | LINGO software, Metaheuristic | |
[24] | CLSC | No | Si | Mu | Yes | No | No | Test problem | Loc/Alloc | Mu | Scatter search, Dual simplex, |
|
[68] | CLSC | No | Si | Si | No | No | No | Test problem | Loc/Alloc | Mu | Metaheuristics | |
[67] | CLSC | Yes | Mu | Mu | No | No | No | an office document company | Loc/Alloc/Inv | Mu | Goal programming, Compromise programming | |
[5] | CLSC | No | Si | Mu | No | No | No | Copier remanufacturing | Loc/Alloc | Mu | Weighted sums, |
|
[22] | CLSC | No | Si | Si | No | No | No | Test problem | Loc/Alloc | Mu | GAMS software, Metaheuristics | |
[7] | CLSC | No | Mu | Mu | No | No | No | Refrigerator industry | Loc/Alloc/Inv | Mu | ||
[20] | CLSC | Yes | Si | Mu | No | No | No | Test problem | Loc/Alloc | Mu | LINGO software, Goal programming | |
[89] | CLSC | Yes | Si | Mu | No | No | No | Test problem | Loc/Alloc | Mu | Interval-stochastic, robust optimization, Metaheuristic, Lower bound procedure, GAMS software | |
[48] | RL | No | Si | Mu | No | No | Yes | Test problem | Loc/Alloc | Si | GAMS software | |
[93] | CLSC | No | Si | Si | No | No | No | Gold industry | Loc/Alloc | Mu | LINGO software, Metaheuristic | |
[54] | CLSC | No | Si | Mu | No | No | No | Test problem | Loc/Alloc | Mu | LINGO software, LP-metrics | |
[85] | CLSC | No | Si | Mu | No | No | No | Copiers industry | Loc/Alloc | Mu | ||
[92] | CLSC | No | Mu | Mu | No | No | No | LCD and LED TV | Loc/Alloc/ Route/Inv | Mu | stochastic-possibilistic programming, modified game theory, lower bound procedure, GAMS software, Hybrid metaheuristic | |
[18] | CLSC | No | Si | Si | No | No | No | Solar cell industry | Loc/Alloc | Mu | branch & bound, CPLEX software, Metaheuristic | |
[94] | RL | No | Si | Mu | No | No | Yes | Test problem | Alloc | Si | CPLEX software | |
[37] | CLSC | No | Mu | Si | Yes | No | No | Filter | Loc/Alloc/SS/Inv/Price | Mu | Karush–Kuhn–Tucker, conditions possibilistic method, |
|
[75] | CLSC | Yes | Mu | Mu | No | Yes | No | Test problem | Loc/Alloc/SS | Mu | CPLEX software, LP-metrics | |
[72] | CLSC | No | Si | Si | No | No | Yes | Test problem | Loc/Alloc | Mu | GAMS software, Metaheuristics | |
[40] | CLSC | Yes | Mu | Mu | No | No | No | Test problem | Loc/Alloc/Inv | Mu | ||
[61] | CLSC | No | Mu | Mu | Yes | No | No | Battery | Loc/Alloc/TPS | Mu | Fully fuzzy stochastic programming | |
[86] | CLSC | No | Mu | Si | No | Yes | No | CFL light bulb | Alloc/Inv/Price | Mu | Fuzzy TH approach [88] | |
[65] | CLSC | No | Si | Mu | No | No | No | Tanker industry | Loc/Alloc/SS | Mu | Multi-choice goal programming with utility function | |
[66] | CLSC | No | Mu | Si | No | No | No | Test problem | Loc/Alloc | Mu | MATLAB software | |
This paper | CLSC | Yes | Mu | Mu | Yes | Yes | Yes | Test problem | Loc/Alloc/TPS | Mu | ||
Notes: fac. (facility); Out. (outsource); Disc. (discount); Cross. (cross-dock); Des. (description); RL (reverse logistic); CLSC (closed loop supply chain); Si (single); Mu (multi); Loc (location); Alloc (allocation); Inv (inventory); Route (routing); SS (supplier selection); TPS (third party selection); Price (pricing) |
Parameters | Symbols | Levels | Value Tuned | ||
Level 1 | Level 2 | Level 3 | |||
Pop Size | (A) | 100 | 150 | 200 | 100 |
Iteration | (B) | 100 | 150 | 200 | 200 |
Crossover Rate | (C) | 0.85 | 0.9 | 0.95 | 0.85 |
Mutation Rate | (D) | 0.03 | 0.05 | 0.1 | 0.05 |
Parameters | Symbols | Levels | Value Tuned | ||
Level 1 | Level 2 | Level 3 | |||
Pop Size | (A) | 100 | 150 | 200 | 100 |
Iteration | (B) | 100 | 150 | 200 | 200 |
Crossover Rate | (C) | 0.85 | 0.9 | 0.95 | 0.85 |
Mutation Rate | (D) | 0.03 | 0.05 | 0.1 | 0.05 |
Parameters | Symbols | Levels | Value Tuned | ||
Level 1 | Level 2 | Level 3 | |||
Pop Size | (A) | 50 | 100 | 150 | 100 |
Iteration | (B) | 100 | 150 | 200 | 200 |
Inertia Weight | (C) | 0.75 | 0.8 | 0.85 | 0.75 |
C1 | (D) | 1.0 | 1.5 | 2.0 | 1.5 |
C2 | (E) | 1.0 | 1.5 | 2.0 | 1.5 |
Parameters | Symbols | Levels | Value Tuned | ||
Level 1 | Level 2 | Level 3 | |||
Pop Size | (A) | 50 | 100 | 150 | 100 |
Iteration | (B) | 100 | 150 | 200 | 200 |
Inertia Weight | (C) | 0.75 | 0.8 | 0.85 | 0.75 |
C1 | (D) | 1.0 | 1.5 | 2.0 | 1.5 |
C2 | (E) | 1.0 | 1.5 | 2.0 | 1.5 |
Problem levels | Problem size (I, C, J, K, M, N, P, T) | |
Small scale | P1. (2, 2, 5, 2, 2, 2, 4, 3) | P6. (4, 3, 10, 2, 2, 2, 4, 3) |
P2. (2, 2, 7, 3, 2, 2, 4, 3) | P7. (5, 2, 5, 2, 2, 2, 4, 3) | |
P3. (3, 3, 10, 2, 2, 2, 4, 3) | P8. (5, 2, 7, 3, 2, 2, 4, 3) | |
P4. (3, 2, 5, 2, 2, 2, 4, 3) | P9. (6, 3, 10, 2, 2, 2, 4, 3) | |
P5. (4, 2, 7, 3, 2, 2, 4, 3) | P10. (6, 3, 10, 3, 2, 2, 4, 3) | |
Medium scale | P11. (7, 4, 15, 3, 2, 3, 4, 5) | P16. (11, 5, 30, 3, 3, 3, 4, 5) |
P12. (7, 4, 20, 4, 2, 4, 4, 5) | P17. (13, 4, 15, 3, 2, 3, 4, 5) | |
P13. (9, 5, 30, 3, 3, 3, 4, 5) | P18. (13, 4, 20, 4, 2, 4, 4, 5) | |
P14. (9, 4, 15, 3, 2, 3, 4, 5) | P19. (15, 5, 30, 3, 3, 3, 4, 5) | |
P15. (11, 4, 20, 4, 2, 4, 4, 5) | P20. (15, 5, 30, 4, 3, 4, 4, 5) | |
Large scale | P21. (16, 6, 50, 5, 3, 5, 4, 10) | P26. (20, 9,100, 5, 4, 5, 4, 10) |
P22. (16, 6, 75, 7, 3, 7, 4, 10) | P27. (22, 6, 50, 5, 3, 5, 4, 10) | |
P23. (18, 9,100, 5, 4, 5, 4, 10) | P28. (22, 6, 75, 7, 3, 7, 4, 10) | |
P24. (18, 6, 50, 5, 3, 5, 4, 10) | P29. (24, 9,100, 5, 4, 5, 4, 10) | |
P25. (20, 6, 75, 7, 3, 7, 4, 10) | P30. (24, 9,100, 7, 4, 7, 4, 10) |
Problem levels | Problem size (I, C, J, K, M, N, P, T) | |
Small scale | P1. (2, 2, 5, 2, 2, 2, 4, 3) | P6. (4, 3, 10, 2, 2, 2, 4, 3) |
P2. (2, 2, 7, 3, 2, 2, 4, 3) | P7. (5, 2, 5, 2, 2, 2, 4, 3) | |
P3. (3, 3, 10, 2, 2, 2, 4, 3) | P8. (5, 2, 7, 3, 2, 2, 4, 3) | |
P4. (3, 2, 5, 2, 2, 2, 4, 3) | P9. (6, 3, 10, 2, 2, 2, 4, 3) | |
P5. (4, 2, 7, 3, 2, 2, 4, 3) | P10. (6, 3, 10, 3, 2, 2, 4, 3) | |
Medium scale | P11. (7, 4, 15, 3, 2, 3, 4, 5) | P16. (11, 5, 30, 3, 3, 3, 4, 5) |
P12. (7, 4, 20, 4, 2, 4, 4, 5) | P17. (13, 4, 15, 3, 2, 3, 4, 5) | |
P13. (9, 5, 30, 3, 3, 3, 4, 5) | P18. (13, 4, 20, 4, 2, 4, 4, 5) | |
P14. (9, 4, 15, 3, 2, 3, 4, 5) | P19. (15, 5, 30, 3, 3, 3, 4, 5) | |
P15. (11, 4, 20, 4, 2, 4, 4, 5) | P20. (15, 5, 30, 4, 3, 4, 4, 5) | |
Large scale | P21. (16, 6, 50, 5, 3, 5, 4, 10) | P26. (20, 9,100, 5, 4, 5, 4, 10) |
P22. (16, 6, 75, 7, 3, 7, 4, 10) | P27. (22, 6, 50, 5, 3, 5, 4, 10) | |
P23. (18, 9,100, 5, 4, 5, 4, 10) | P28. (22, 6, 75, 7, 3, 7, 4, 10) | |
P24. (18, 6, 50, 5, 3, 5, 4, 10) | P29. (24, 9,100, 5, 4, 5, 4, 10) | |
P25. (20, 6, 75, 7, 3, 7, 4, 10) | P30. (24, 9,100, 7, 4, 7, 4, 10) |
Parameter | Random generation function |
Demand (DE) | U [50,150] |
Production capacity (MC) | U [200*J/I, 200*J/I+275*J/I] |
Transportation capacity (VC) | U [200*N*J/I, 200*N*J/I+275*N*J/I] |
Upper bound (U) | Transportation capacity/P+1 |
Transportation fixed cost I (FCC) | U [15, 20] |
Transportation fixed cost II (FCR) | U [8, 15] |
Transportation fixed cost III (FCD) | U [5, 10] |
Transportation cost I (TIC) | U [10, 15] |
Transportation cost II (TCJ) | U [4, 8] |
Transportation cost III (TCD) | U [3, 5] |
Production cost (PC) | U [80,100] |
Opening cost of hybrid facility (EC) | U [5, 30] |
Recovery cost (RC) | U [20, 30] |
Consolidation time (TA) | U [0.08, 0.11] |
Inspection time (TI) | U [0.03, 0.06] |
Transportation time I (TC) | U [2, 20] |
Transportation time II (TM) | U [1.5, 12] |
Transportation time III (TD) | U [3, 5] |
Fraction of returned product ( |
U [0.02, 0.04] |
Fraction of recoverable product ( |
U [0.25, 0.8] |
Weight/volume of each unit of product ( |
U [0.5, 3] |
Parameter | Random generation function |
Demand (DE) | U [50,150] |
Production capacity (MC) | U [200*J/I, 200*J/I+275*J/I] |
Transportation capacity (VC) | U [200*N*J/I, 200*N*J/I+275*N*J/I] |
Upper bound (U) | Transportation capacity/P+1 |
Transportation fixed cost I (FCC) | U [15, 20] |
Transportation fixed cost II (FCR) | U [8, 15] |
Transportation fixed cost III (FCD) | U [5, 10] |
Transportation cost I (TIC) | U [10, 15] |
Transportation cost II (TCJ) | U [4, 8] |
Transportation cost III (TCD) | U [3, 5] |
Production cost (PC) | U [80,100] |
Opening cost of hybrid facility (EC) | U [5, 30] |
Recovery cost (RC) | U [20, 30] |
Consolidation time (TA) | U [0.08, 0.11] |
Inspection time (TI) | U [0.03, 0.06] |
Transportation time I (TC) | U [2, 20] |
Transportation time II (TM) | U [1.5, 12] |
Transportation time III (TD) | U [3, 5] |
Fraction of returned product ( |
U [0.02, 0.04] |
Fraction of recoverable product ( |
U [0.25, 0.8] |
Weight/volume of each unit of product ( |
U [0.5, 3] |
Problem size | $\sharp$ P. | MID | SM | NPS | QM | Time | |||||
NSGA-II | MOPSO | NSGA-II | MOPSO | NSGA-II | MOPSO | NSGA-II | MOPSO | NSGA-II | MOPSO | ||
Small | P1. | 0.2965 | 0.9135 | 0.52047 | 0.79424 | 2 | 13 | 0.11743 | 0.88256 | 152.2674 | 83.61384 |
P2. | 0.7985 | 0.7594 | 1.44002 | 1.42646 | 11 | 5 | 0.21714 | 0.78285 | 170.5 | 93.31762 | |
P3. | 0.6678 | 0.8303 | 0.90528 | 1.30920 | 11 | 20 | 0.16347 | 0.83652 | 170.5483 | 112.2679 | |
P4. | 0.7380 | 0.8242 | 0.34031 | 1.31610 | 4 | 12 | 0.03538 | 0.96461 | 169.0048 | 89.31582 | |
P5. | 0.8355 | 0.9241 | 0.04645 | 0.77740 | 3 | 13 | 0.18888 | 0.81111 | 170.3636 | 105.0191 | |
P6. | 0.8890 | 0.6733 | 0.73833 | 1.26314 | 9 | 11 | 0.14164 | 0.85835 | 170.8992 | 117.5417 | |
P7. | 0.5898 | 0.8458 | 0.92847 | 1.49796 | 9 | 19 | 0.025 | 0.975 | 170.4384 | 115.9775 | |
P8. | 0.6611 | 0.8644 | 1.26429 | 1.74167 | 8 | 12 | 0.03760 | 0.96239 | 170.6712 | 132.081 | |
P9. | 0.8354 | 0.8519 | 0.63885 | 0.40465 | 4 | 7 | 0 | 1 | 170.698 | 131.0991 | |
P10. | 0.9213 | 0.8708 | 0.24135 | 0.98781 | 9 | 3 | 0.01818 | 0.98181 | 170.9277 | 133.0108 | |
Medium | P11. | 1.2217 | 0.6809 | 0.24001 | 0.59929 | 2 | 5 | 0.08008 | 0.91991 | 171.9736 | 171.6591 |
P12. | 1.0055 | 0.6922 | 0.76749 | 0.72169 | 7 | 10 | 0.25 | 0.75 | 174.4272 | 164.5119 | |
P13. | 0.9574 | 0.6393 | 0.27271 | 0.12447 | 4 | 7 | 0.38650 | 0.61349 | 173.6264 | 172.9455 | |
P14. | 1.0100 | 0.8820 | 0.57146 | 0.46826 | 5 | 8 | 0.27200 | 0.72799 | 172.9297 | 173.0899 | |
P15. | 1.0500 | 0.7352 | 0.65799 | 1.15036 | 4 | 4 | 0.15320 | 0.84679 | 173.1716 | 174.1405 | |
P16. | 0.9179 | 0.6964 | 0.56273 | 0.59754 | 6 | 10 | 0.38333 | 0.61666 | 178.755 | 175.1082 | |
P17. | 0.8986 | 0.8084 | 0.53351 | 0.79303 | 2 | 7 | 0.05714 | 0.94285 | 173.6318 | 173.4457 | |
P18. | 0.9193 | 0.7470 | 0.75717 | 0.54668 | 7 | 7 | 0.28666 | 0.71333 | 175.8487 | 164.4145 | |
P19. | 1.0065 | 0.6942 | 0.76486 | 0.44983 | 3 | 4 | 0.24 | 0.76 | 172.0987 | 173.5797 | |
P20. | 0.9107 | 0.6542 | 0.41413 | 1.07685 | 7 | 10 | 0.51414 | 0.48585 | 171.5135 | 174.0156 | |
Large | P21. | 0.9056 | 0.5901 | 0.54131 | 1.23029 | 6 | 4 | 0.64047 | 0.35952 | 183.5318 | 182.9749 |
P22. | 0.7044 | 0.8123 | 0.98102 | 0.64139 | 4 | 8 | 0.375 | 0.625 | 196.9311 | 178.7448 | |
P23. | 0.8133 | 0.5921 | 0.70779 | 0.39384 | 5 | 9 | 0.40090 | 0.59909 | 189.7017 | 195.596 | |
P24. | 0.8936 | 0.6095 | 0.74845 | 0.32664 | 7 | 5 | 0.60333 | 0.39666 | 196.8208 | 173.8915 | |
P25. | 0.8663 | 0.6634 | 0.43799 | 0.39058 | 7 | 3 | 0.61555 | 0.38444 | 180.2806 | 180.9208 | |
P26. | 0.8217 | 0.7219 | 0.10674 | 0.63042 | 7 | 3 | 0.31666 | 0.68333 | 184.1588 | 183.5843 | |
P27. | 0.7576 | 0.7515 | 1.17926 | 0.91817 | 9 | 7 | 0.23690 | 0.76309 | 180.4263 | 193.2142 | |
P28. | 0.9310 | 0.6332 | 0.85185 | 0.95080 | 8 | 5 | 0.59047 | 0.40952 | 192.3841 | 180.048 | |
P29. | 0.7122 | 0.7540 | 0.77547 | 0.99490 | 7 | 4 | 0.34381 | 0.65619 | 177.788 | 186.2371 | |
P30. | 0.9133 | 0.7173 | 0.48094 | 0.91014 | 5 | 5 | 0.59285 | 0.40714 | 211.5774 | 188.7306 |
Problem size | $\sharp$ P. | MID | SM | NPS | QM | Time | |||||
NSGA-II | MOPSO | NSGA-II | MOPSO | NSGA-II | MOPSO | NSGA-II | MOPSO | NSGA-II | MOPSO | ||
Small | P1. | 0.2965 | 0.9135 | 0.52047 | 0.79424 | 2 | 13 | 0.11743 | 0.88256 | 152.2674 | 83.61384 |
P2. | 0.7985 | 0.7594 | 1.44002 | 1.42646 | 11 | 5 | 0.21714 | 0.78285 | 170.5 | 93.31762 | |
P3. | 0.6678 | 0.8303 | 0.90528 | 1.30920 | 11 | 20 | 0.16347 | 0.83652 | 170.5483 | 112.2679 | |
P4. | 0.7380 | 0.8242 | 0.34031 | 1.31610 | 4 | 12 | 0.03538 | 0.96461 | 169.0048 | 89.31582 | |
P5. | 0.8355 | 0.9241 | 0.04645 | 0.77740 | 3 | 13 | 0.18888 | 0.81111 | 170.3636 | 105.0191 | |
P6. | 0.8890 | 0.6733 | 0.73833 | 1.26314 | 9 | 11 | 0.14164 | 0.85835 | 170.8992 | 117.5417 | |
P7. | 0.5898 | 0.8458 | 0.92847 | 1.49796 | 9 | 19 | 0.025 | 0.975 | 170.4384 | 115.9775 | |
P8. | 0.6611 | 0.8644 | 1.26429 | 1.74167 | 8 | 12 | 0.03760 | 0.96239 | 170.6712 | 132.081 | |
P9. | 0.8354 | 0.8519 | 0.63885 | 0.40465 | 4 | 7 | 0 | 1 | 170.698 | 131.0991 | |
P10. | 0.9213 | 0.8708 | 0.24135 | 0.98781 | 9 | 3 | 0.01818 | 0.98181 | 170.9277 | 133.0108 | |
Medium | P11. | 1.2217 | 0.6809 | 0.24001 | 0.59929 | 2 | 5 | 0.08008 | 0.91991 | 171.9736 | 171.6591 |
P12. | 1.0055 | 0.6922 | 0.76749 | 0.72169 | 7 | 10 | 0.25 | 0.75 | 174.4272 | 164.5119 | |
P13. | 0.9574 | 0.6393 | 0.27271 | 0.12447 | 4 | 7 | 0.38650 | 0.61349 | 173.6264 | 172.9455 | |
P14. | 1.0100 | 0.8820 | 0.57146 | 0.46826 | 5 | 8 | 0.27200 | 0.72799 | 172.9297 | 173.0899 | |
P15. | 1.0500 | 0.7352 | 0.65799 | 1.15036 | 4 | 4 | 0.15320 | 0.84679 | 173.1716 | 174.1405 | |
P16. | 0.9179 | 0.6964 | 0.56273 | 0.59754 | 6 | 10 | 0.38333 | 0.61666 | 178.755 | 175.1082 | |
P17. | 0.8986 | 0.8084 | 0.53351 | 0.79303 | 2 | 7 | 0.05714 | 0.94285 | 173.6318 | 173.4457 | |
P18. | 0.9193 | 0.7470 | 0.75717 | 0.54668 | 7 | 7 | 0.28666 | 0.71333 | 175.8487 | 164.4145 | |
P19. | 1.0065 | 0.6942 | 0.76486 | 0.44983 | 3 | 4 | 0.24 | 0.76 | 172.0987 | 173.5797 | |
P20. | 0.9107 | 0.6542 | 0.41413 | 1.07685 | 7 | 10 | 0.51414 | 0.48585 | 171.5135 | 174.0156 | |
Large | P21. | 0.9056 | 0.5901 | 0.54131 | 1.23029 | 6 | 4 | 0.64047 | 0.35952 | 183.5318 | 182.9749 |
P22. | 0.7044 | 0.8123 | 0.98102 | 0.64139 | 4 | 8 | 0.375 | 0.625 | 196.9311 | 178.7448 | |
P23. | 0.8133 | 0.5921 | 0.70779 | 0.39384 | 5 | 9 | 0.40090 | 0.59909 | 189.7017 | 195.596 | |
P24. | 0.8936 | 0.6095 | 0.74845 | 0.32664 | 7 | 5 | 0.60333 | 0.39666 | 196.8208 | 173.8915 | |
P25. | 0.8663 | 0.6634 | 0.43799 | 0.39058 | 7 | 3 | 0.61555 | 0.38444 | 180.2806 | 180.9208 | |
P26. | 0.8217 | 0.7219 | 0.10674 | 0.63042 | 7 | 3 | 0.31666 | 0.68333 | 184.1588 | 183.5843 | |
P27. | 0.7576 | 0.7515 | 1.17926 | 0.91817 | 9 | 7 | 0.23690 | 0.76309 | 180.4263 | 193.2142 | |
P28. | 0.9310 | 0.6332 | 0.85185 | 0.95080 | 8 | 5 | 0.59047 | 0.40952 | 192.3841 | 180.048 | |
P29. | 0.7122 | 0.7540 | 0.77547 | 0.99490 | 7 | 4 | 0.34381 | 0.65619 | 177.788 | 186.2371 | |
P30. | 0.9133 | 0.7173 | 0.48094 | 0.91014 | 5 | 5 | 0.59285 | 0.40714 | 211.5774 | 188.7306 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 0.1517 | 0.1517 | 8.09 | 0.006 |
Error | 58 | 1.0869 | 0.0187 | ||
Total | 59 | 1.2386 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 0.1517 | 0.1517 | 8.09 | 0.006 |
Error | 58 | 1.0869 | 0.0187 | ||
Total | 59 | 1.2386 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 3.0071 | 3.0071 | 75.25 | 0.000 |
Error | 58 | 2.3179 | 0.0400 | ||
Total | 59 | 5.3250 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 3.0071 | 3.0071 | 75.25 | 0.000 |
Error | 58 | 2.3179 | 0.0400 | ||
Total | 59 | 5.3250 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 56.1 | 56.1 | 4.35 | 0.041 |
Error | 58 | 747.9 | 12.9 | ||
Total | 59 | 803.9 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 56.1 | 56.1 | 4.35 | 0.041 |
Error | 58 | 747.9 | 12.9 | ||
Total | 59 | 803.9 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 3.0071 | 3.0071 | 75.25 | 0.000 |
Error | 58 | 2.3179 | 0.0400 | ||
Total | 59 | 5.3250 |
Source | DF | SS | MS | F-Test | P-Value |
Factor | 1 | 3.0071 | 3.0071 | 75.25 | 0.000 |
Error | 58 | 2.3179 | 0.0400 | ||
Total | 59 | 5.3250 |
Objective functions | Demand's change interval | ||||
-20% | -10% | 0% | 10% | 20% | |
Total cost | 431,871 | 553,901 | 806,133 | 849,666 | 948,245 |
Total processing time | 186 | 221 | 240 | 276 | 298 |
Objective functions | Demand's change interval | ||||
-20% | -10% | 0% | 10% | 20% | |
Total cost | 431,871 | 553,901 | 806,133 | 849,666 | 948,245 |
Total processing time | 186 | 221 | 240 | 276 | 298 |
[1] |
Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1161-1183. doi: 10.3934/jimo.2021014 |
[2] |
Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021107 |
[3] |
Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061 |
[4] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[5] |
Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3247-3268. doi: 10.3934/jimo.2020116 |
[6] |
Kaveh Keshmiry Zadeh, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. Designing a multi-echelon closed-loop supply chain with disruption in the distribution centers under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022057 |
[7] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[8] |
Abdolhossein Sadrnia, Amirreza Payandeh Sani, Najme Roghani Langarudi. Sustainable closed-loop supply chain network optimization for construction machinery recovering. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2389-2414. doi: 10.3934/jimo.2020074 |
[9] |
Xumei Zhang, Jiafeng Yuan, Bin Dan, Ronghua Sui, Wenbo Li. The evolution mechanism of the multi-value chain network ecosystem supported by the third-party platform. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021148 |
[10] |
Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074 |
[11] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
[12] |
Yi Jing, Wenchuan Li. Integrated recycling-integrated production - distribution planning for decentralized closed-loop supply chain. Journal of Industrial and Management Optimization, 2018, 14 (2) : 511-539. doi: 10.3934/jimo.2017058 |
[13] |
Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial and Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039 |
[14] |
Dingzhong Feng, Xiaofeng Zhang, Ye Zhang. Collection decisions and coordination in a closed-loop supply chain under recovery price and service competition. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021117 |
[15] |
Guangzhou Yan, Qinyu Song, Yaodong Ni, Xiangfeng Yang. Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021181 |
[16] |
Huaqing Cao, Xiaofen Ji. Optimal recycling price strategy of clothing enterprises based on closed-loop supply chain. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021232 |
[17] |
Shuaishuai Fu, Weida Chen, Junfei Ding, Dandan Wang. Optimal financing strategy in a closed-loop supply chain for construction machinery remanufacturing with emissions abatement. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022002 |
[18] |
Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1603-1627. doi: 10.3934/jimo.2021035 |
[19] |
Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055 |
[20] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]