We study stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. An instance of the problem is called $ \alpha $-stable if this instance exists a sole optimal solution and the solution keeps unchanged when distances and penalty costs are scaled by a factor of no more than $ \alpha $. Stable instances of clustering problem have been used to explain why certain heuristic algorithms with poor theoretical guarantees perform quite well in practical. For any fixed $ \epsilon > 0 $, we show that when using a common multi-swap local-search algorithm, a $ (1+\epsilon) $-stable instance of the $ k $-means problem with penalties in fixed-dimensional Euclidean space can be solved accurately in polynomial time.
Citation: |
[1] |
S. Ahmadian, A. Norouzi-Fard, O. Svensson and J. Ward, Better guarantees for $k$-means and Euclidean $k$-median by primal-dual algorithms, 58th Annual IEEE Symposium on Foundations of Computer Science-FOCS, (2017), 61-72.
doi: 10.1137/18M1171321.![]() ![]() ![]() |
[2] |
D. Aloise, A. Deshpande, P. Hansen and P. Popat, NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 75 (2009), 245-248.
doi: 10.1007/s10994-009-5103-0.![]() ![]() |
[3] |
H. Angelidakis, K. Makarychev and Y. Makarychev, Algorithms for stable and perturbation-resilient problems, STOC'17-Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, (2017), 438-451.
doi: 10.1145/3055399.3055487.![]() ![]() ![]() |
[4] |
V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit, Local search heuristics for $k$-median and facility location problems, SIAM J. Comput., 33 (2004), 544-562.
doi: 10.1137/S0097539702416402.![]() ![]() ![]() |
[5] |
P. Awasthi, A. Blum and O. Sheffet, Stability yields a PTAS for $k$-median and $k$-means clustering, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science-FOCS, (2010), 309-318.
doi: 10.1109/FOCS. 2010.36.![]() ![]() ![]() |
[6] |
P. Awasthi, A. Blum and O. Sheffet, Center-based clustering under perturbation stability, Inform. Process. Lett., 112 (2012), 49-54.
doi: 10.1016/j.ipl.2011.10.006.![]() ![]() ![]() |
[7] |
M. F. Balcan and Y. Liang, Clustering under perturbation resilience, SIAM J. Comput., 45 (2016), 102-155.
doi: 10.1137/140981575.![]() ![]() ![]() |
[8] |
Y. Bilu and N. Linial, Are stable instances easy?, Combin. Probab. Comput., 21 (2012), 643-660.
doi: 10.1017/S0963548312000193.![]() ![]() ![]() |
[9] |
M. Charikar and S. Guha, Improved combinatorial algorithms for the facility location and $k$-median problems, 40th Annual Symposium on Foundations of Computer Science (New York, 1999), (1999), 378-388.
doi: 10.1109/SFFCS. 1999.814609.![]() ![]() ![]() |
[10] |
V. Cohen-Addad, P. N. Klein and C. Mathieu, Local search yields approximation schemes for $k$-means and $k$-median in Euclidean and minor-free metrics, SIAM J. Comput., 48 (2019), 644-667.
doi: 10.1137/17M112717X.![]() ![]() ![]() |
[11] |
P. Drineas, A. Frieze, R. Kannan, S. Vempala and V. Vinay, Clustering large graphs via the singular value decomposition, Machine Learning, 56 (2004), 9-33.
doi: 10.1023/B:MACH.0000033113.59016.96.![]() ![]() |
[12] |
D. Du, X. Wang and D. Xu, An approximation algorithm for the $k$-level capacitated facility location problem, J. Comb. Optim., 20 (2010), 361-368.
doi: 10.1007/s10878-009-9213-1.![]() ![]() ![]() |
[13] |
Q. Feng, Z. Zhang, F. Shi and J. Wang, An improved approximation algorithm for the $k$-means problem with penalties, Proceedings of FAW, (2019), 170-181.
doi: 10.1007/978-3-030-18126-0_15.![]() ![]() |
[14] |
Z. Friggstad, K. Khodamoradi and M. R. Salavatipour, Exact algorithms and lower bounds for stable instances of Euclidean $k$-means, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, (2019), 2958-2972.
doi: 10.1137/1.9781611975482.183.![]() ![]() ![]() |
[15] |
Z. Friggstad, M. Rezapour and M. R. Salavatipour, Local search yields a PTAS for $k$-means in doubling metrics, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), (2016), 365-374.
doi: 10.1109/focs. 2016.47.![]() ![]() ![]() |
[16] |
S. Ji, D. Xu, L. Guo, M. Li and D. Zhang, The seeding algorithm for spherical $k$-means clustering with penalties, Journal of Combinatorial Optimization, (2020, Accepted).
doi: 10.1007/s10878-020-00569-1.![]() ![]() |
[17] |
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A. Y. Wu, A local search approximation algorithm for $k$-means clustering, Comput. Geom., 28 (2004), 89-112.
doi: 10.1016/j.comgeo.2004.03.003.![]() ![]() ![]() |
[18] |
M. Li, The bi-criteria seeding algorithms for two variants of $k$-means problem, J. Comb. Optim., (2020, Accepted).
doi: 10.1007/s10878-020-00537-9.![]() ![]() |
[19] |
M. Li, D. Xu, J. Yue, D. Zhang and P. Zhang, The seeding algorithm for $k$-means problem with penalties, J. Comb. Optim., 39 (2020), 15-32.
doi: 10.1007/s10878-019-00450-w.![]() ![]() ![]() |
[20] |
A.-Y. Liang and D. Lin, Crossover iterated local search for SDCARP, J. Oper. Res. Soc. China, 2 (2014), 351-367.
doi: 10.1007/s40305-014-0056-9.![]() ![]() ![]() |
[21] |
M. Mahajan, P. Nimbhorkar and K. Varadarajan, The planar $k$-means problem is NP-hard, Proceedings of WALCOM, 5431 (2009), 274-285.
doi: 10.1007/978-3-642-00202-1_24.![]() ![]() ![]() |
[22] |
J. Matoušek, On approximate geometric $k$-clustering, Discrete Comput. Geom., 24 (2000), 61-84.
doi: 10.1007/s004540010019.![]() ![]() ![]() |
[23] |
G. C. Tseng, Penalized and weighted $k$-means for clustering with scattered objects and prior information in high-throughput biological data, Bioinformatics, (2007), 2247-2255.
doi: 10.1093/bioinformatics/btm320.![]() ![]() |
[24] |
H. Yang, F. Li, D. Yu, Y. Zou and J. Yu, Reliable data storage in heterogeneous wireless sensor networks by jointly optimizing routing and storage node deployment, Tsinghua Science and Technology, 26 (2021), 230-238.
doi: 10.26599/TST.2019.9010061.![]() ![]() |
[25] |
D. Ye, L. Mei and Y. Zhang, Strategy-proof mechanism for obnoxious facility location on a line, Proceedings of COCOON, 9198 (2015), 45-56.
doi: 10.1007/978-3-319-21398-9_4.![]() ![]() ![]() |
[26] |
D. Zhang, C. Hao, C. Wu, D. Xu and Z. Zhang, Local search approximation algorithms for the $k$-means problem with penalties, J. Comb. Optim., 37 (2019), 439-453.
doi: 10.1007/s10878-018-0278-6.![]() ![]() ![]() |
[27] |
Y. Zhang, F. Y. L. Chin and H. Zhu, A 1-local asymptotic 13/9-competitive algorithm for multicoloring hexagonal graphs, Algorithmica, 54 (2009), 557-567.
doi: 10.1007/s00453-008-9203-1.![]() ![]() ![]() |