Advanced Search
Article Contents
Article Contents

A note on the solvability of a tensor equation

This work is partially supported by National Science Foundation of China (Grant No. 11771328), Young Elite Scientists Sponsorship Program by Tianjin, and the Natural Science Foundation of Zhejiang Province, China (Grant No. LD19A010002)

Abstract Full Text(HTML) Related Papers Cited by
  • In this note, we generalize a solvability result for a tensor equation with a nonsingular leading tensor to the case with possibly a singular leading tensor.

    Mathematics Subject Classification: Primary: 15A18; Secondary: 15A69.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Friedland, Inverse eigenvalue problem, Linear Algebra Appl., 17 (1977), 15-51.  doi: 10.1016/0024-3795(77)90039-8.
    [2] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.
    [3] S. HuZ.-H. HuangC. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symb. Comput., 50 (2013), 508-531.  doi: 10.1016/j.jsc.2012.10.001.
    [4] Z.-H. Huang and L. Qi, Tensor complementarity problems–Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.  doi: 10.1007/s10957-019-01566-z.
    [5] I. R. Shafarevich, Basic Algebraic Geometry, Translated from the Russian by K. A. Hirsch. Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. Springer Study Edition. Springer-Verlag, Berlin-New York, 1977.
    [6] X. WangM. Che and Y. Wei, Existence and uniqueness of positive solution for $H^+$-tensor equations, Appl. Math. Lett., 98 (2019), 191-198.  doi: 10.1016/j.aml.2019.05.046.
    [7] X. Wang, M. Che and Y. Wei, Neural network approach for solving nonsingular multi-linear tensor systems, J. Comput. Appl. Math., 368 (2020), 112569. doi: 10.1016/j.cam.2019.112569.
  • 加载中

Article Metrics

HTML views(1180) PDF downloads(505) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint