In this note, we generalize a solvability result for a tensor equation with a nonsingular leading tensor to the case with possibly a singular leading tensor.
Citation: |
[1] |
S. Friedland, Inverse eigenvalue problem, Linear Algebra Appl., 17 (1977), 15-51.
doi: 10.1016/0024-3795(77)90039-8.![]() ![]() ![]() |
[2] |
R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.
![]() ![]() |
[3] |
S. Hu, Z.-H. Huang, C. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symb. Comput., 50 (2013), 508-531.
doi: 10.1016/j.jsc.2012.10.001.![]() ![]() ![]() |
[4] |
Z.-H. Huang and L. Qi, Tensor complementarity problems–Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.
doi: 10.1007/s10957-019-01566-z.![]() ![]() ![]() |
[5] |
I. R. Shafarevich, Basic Algebraic Geometry, Translated from the Russian by K. A. Hirsch. Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. Springer Study Edition. Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
[6] |
X. Wang, M. Che and Y. Wei, Existence and uniqueness of positive solution for $H^+$-tensor equations, Appl. Math. Lett., 98 (2019), 191-198.
doi: 10.1016/j.aml.2019.05.046.![]() ![]() ![]() |
[7] |
X. Wang, M. Che and Y. Wei, Neural network approach for solving nonsingular multi-linear tensor systems, J. Comput. Appl. Math., 368 (2020), 112569.
doi: 10.1016/j.cam.2019.112569.![]() ![]() ![]() |