# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2021153
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Solving a fractional programming problem in a commercial bank

 1 School of Business, National University of Mongolia, Ulaanbaatar, PC 14200, Mongolia 2 Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, Ulaanbaatar, PC 13330, Mongolia

* Corresponding author: Ankhbayar Chuluunbaatar

Received  March 2021 Revised  June 2021 Early access September 2021

We formulate a new optimization problem which arises in the Bank Asset and Liability Management (ALM). The problem is a fractional programming which belongs to a class of global optimization. Most of optimization problems in the Bank Asset and Liability Management are return maximization or risk minimization problems. For solving the fractional programming problem, we propose curvilinear multi-start algorithm which finds the best local solutions to the problem. Numerical results are given based on the balance sheets of 5 commercial banks of Mongolia.

Citation: Ankhbayar Chuluunbaatar, Enkhbat Rentsen. Solving a fractional programming problem in a commercial bank. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021153
##### References:
 [1] C. Ankhbayar and R. Enkhbat, A fractional programming problem for bank asset and liability management, IBusiness, 10 (2018), 119-127. [2] J. R. Birge, The value of the stochastic solution in stochastic linear programs with fixed recourse, Math. Programming, 24 (1982), 314-325.  doi: 10.1007/BF01585113. [3] D. P. Bertsekas, Nonlinear Programming, 2$^{nd}$ edition, Athena Scientific, 1999. [4] K. J. Cohen and S. Thore, Programming bank portfolio under uncertainty, Journal of Bank Research, 2 (1970), 28-40. [5] D. Chambers and A. Charnes, Inter-temporal analysis and optimization of bank portfolio, Management Science, 7 (1961), 393-410.  doi: 10.1287/mnsc.7.4.393. [6] G. D. Eppen and E. F. Fama, Three asset cash balance and dynamic portfolio problems, Management Science, 17 (1971), 311-319.  doi: 10.1287/mnsc.17.5.311. [7] R. Enkhbat, S. Batbileg, N. Tungalag, A. Anikin and A. Gornov, A global optimization approach to nonzero sum six-person game, Frontiers in Games and Dynamic Games, (eds. Y. David, L. Shravan and K.L. Chee), Academic Press, (2020), 219–227. [8] L. F. Escudero and A. Garin, On multistage stochastic integer programming for incorporating logical constraints in asset and liability management under uncertainty, Computer Management Science, 6 (2009), 307-327.  doi: 10.1007/s10287-006-0035-7. [9] L. Eatman and J. Sealey, A multi-objective linear programming model for commercial bank balance sheet management, Journal of Bank Research, 9 (1979), 227-236. [10] D. Giokas and M. Vassiloglou, A goal programming model for bank assets and liabilities management, European Journal of Operations Research, 50 (1991), 48-60.  doi: 10.1016/0377-2217(91)90038-W. [11] K. Kosmidou and C. Zopounidis, Generating interest rate scenarios for bank asset liability management, Optimization Letters, 2 (2008), 157-169.  doi: 10.1007/s11590-007-0050-9. [12] M. I. Kusy and W. T. Ziemba, A bank asset and liability management model, Operations Research, 34 (1986), 356-376.  doi: 10.1287/opre.34.3.356. [13] K. Kosmidou and C. Zopounidis, A multi-objective methodology for bank asset and liability management, Financial Engineering, 7 (2002), 139-151. [14] R. Kouwenberg and S. Zenios, Stochastic programming models for asset and liability management, Handbook of Asset and Liability Management, (eds. S.A. Zenios and W.T. Ziemba), Academic Press, (2006), 253–303. [15] H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. [16] R. C. Merton, Lifetime portfolio selection under certainty: Continuous time case, Review of Economics and Statistics, 5 (1969), 373-413. [17] R. Mohammandi and M. Sherafati, Optimization of bank liquidity management using goal programming and fuzzy AHP, Research Journal of Recent Sciences, 4 (2015), 53-61. [18] J. D. Pinter, Global Optimization in Action, Kluwer Academic Publishers, 1996. [19] P. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, Review of Economics and Statistics, 8 (1969), 239-246. [20] R. Schultz and S. Tiedemann, Risk aversion via excess probabilities in stochastic programs with mixed-integers recourse, SIAM J. Optim., 14 (2004), 115-138.  doi: 10.1137/S1052623402410855. [21] F. V. Vasiliev, Numerical Methods of Extremal Problems, Nauka, Moskow, 1998. [22] Y. Zeng and Z. Li, Asset and liability management under benchmark and mean-variance criteria in a jump diffusion market, Journal of Systems Science and Complex, 24 (2011), 317-327.  doi: 10.1007/s11424-011-9105-1.

show all references

##### References:
 [1] C. Ankhbayar and R. Enkhbat, A fractional programming problem for bank asset and liability management, IBusiness, 10 (2018), 119-127. [2] J. R. Birge, The value of the stochastic solution in stochastic linear programs with fixed recourse, Math. Programming, 24 (1982), 314-325.  doi: 10.1007/BF01585113. [3] D. P. Bertsekas, Nonlinear Programming, 2$^{nd}$ edition, Athena Scientific, 1999. [4] K. J. Cohen and S. Thore, Programming bank portfolio under uncertainty, Journal of Bank Research, 2 (1970), 28-40. [5] D. Chambers and A. Charnes, Inter-temporal analysis and optimization of bank portfolio, Management Science, 7 (1961), 393-410.  doi: 10.1287/mnsc.7.4.393. [6] G. D. Eppen and E. F. Fama, Three asset cash balance and dynamic portfolio problems, Management Science, 17 (1971), 311-319.  doi: 10.1287/mnsc.17.5.311. [7] R. Enkhbat, S. Batbileg, N. Tungalag, A. Anikin and A. Gornov, A global optimization approach to nonzero sum six-person game, Frontiers in Games and Dynamic Games, (eds. Y. David, L. Shravan and K.L. Chee), Academic Press, (2020), 219–227. [8] L. F. Escudero and A. Garin, On multistage stochastic integer programming for incorporating logical constraints in asset and liability management under uncertainty, Computer Management Science, 6 (2009), 307-327.  doi: 10.1007/s10287-006-0035-7. [9] L. Eatman and J. Sealey, A multi-objective linear programming model for commercial bank balance sheet management, Journal of Bank Research, 9 (1979), 227-236. [10] D. Giokas and M. Vassiloglou, A goal programming model for bank assets and liabilities management, European Journal of Operations Research, 50 (1991), 48-60.  doi: 10.1016/0377-2217(91)90038-W. [11] K. Kosmidou and C. Zopounidis, Generating interest rate scenarios for bank asset liability management, Optimization Letters, 2 (2008), 157-169.  doi: 10.1007/s11590-007-0050-9. [12] M. I. Kusy and W. T. Ziemba, A bank asset and liability management model, Operations Research, 34 (1986), 356-376.  doi: 10.1287/opre.34.3.356. [13] K. Kosmidou and C. Zopounidis, A multi-objective methodology for bank asset and liability management, Financial Engineering, 7 (2002), 139-151. [14] R. Kouwenberg and S. Zenios, Stochastic programming models for asset and liability management, Handbook of Asset and Liability Management, (eds. S.A. Zenios and W.T. Ziemba), Academic Press, (2006), 253–303. [15] H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. [16] R. C. Merton, Lifetime portfolio selection under certainty: Continuous time case, Review of Economics and Statistics, 5 (1969), 373-413. [17] R. Mohammandi and M. Sherafati, Optimization of bank liquidity management using goal programming and fuzzy AHP, Research Journal of Recent Sciences, 4 (2015), 53-61. [18] J. D. Pinter, Global Optimization in Action, Kluwer Academic Publishers, 1996. [19] P. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, Review of Economics and Statistics, 8 (1969), 239-246. [20] R. Schultz and S. Tiedemann, Risk aversion via excess probabilities in stochastic programs with mixed-integers recourse, SIAM J. Optim., 14 (2004), 115-138.  doi: 10.1137/S1052623402410855. [21] F. V. Vasiliev, Numerical Methods of Extremal Problems, Nauka, Moskow, 1998. [22] Y. Zeng and Z. Li, Asset and liability management under benchmark and mean-variance criteria in a jump diffusion market, Journal of Systems Science and Complex, 24 (2011), 317-327.  doi: 10.1007/s11424-011-9105-1.
The decision variables
 $Assets$ $Liabilities$ $A_1: \text{Cash and cash equivalents}$ $L_1: \text{Current account}$ $A_2: \text{Deposits to the Bank of Mongolia}$ $L_2: \text{Time deposit}$ $A_3: \text{Deposits at other banks}$ $L_3: \text{Demand deposit}$ $A_4: \text{Financial investments}$ $L_4: \text{Placements by other banks}$ $A_5: \text{Loans and advances}$ $L_5: \text{Other deposits}$ $A_6: \text{Other financial assets}$ $L_6: \text{Other liabilities}$ $A_7: \text{Fixed assets}$ $E: \text{Equity}$ $A: \text{Total assets}$ $L+E = A: \text{Total assets}$
 $Assets$ $Liabilities$ $A_1: \text{Cash and cash equivalents}$ $L_1: \text{Current account}$ $A_2: \text{Deposits to the Bank of Mongolia}$ $L_2: \text{Time deposit}$ $A_3: \text{Deposits at other banks}$ $L_3: \text{Demand deposit}$ $A_4: \text{Financial investments}$ $L_4: \text{Placements by other banks}$ $A_5: \text{Loans and advances}$ $L_5: \text{Other deposits}$ $A_6: \text{Other financial assets}$ $L_6: \text{Other liabilities}$ $A_7: \text{Fixed assets}$ $E: \text{Equity}$ $A: \text{Total assets}$ $L+E = A: \text{Total assets}$
nitial values of $v$ for banks
 $Ratio$ $Khan$ $TDB$ $XAC$ $State$ $Golomt$ $Mean$ $Stdev$ $v_1$ $0.564$ $0.520$ $0.545$ $0.409$ $0.528$ $0.513$ $0.061$ $v_2$ $0.457$ $0.403$ $0.442$ $0.599$ $0.445$ $0.469$ $0.075$ $v_3$ $0.405$ $0.253$ $0.358$ $0.496$ $0.412$ $0.385$ $0.089$ $v_4$ $0.477$ $0.452$ $0.483$ $0.362$ $0.472$ $0.449$ $0.050$ $v_5$ $0.202$ $0.203$ $0.413$ $0.181$ $0.186$ $0.237$ $0.099$ $v_6$ $0.998$ $1.648$ $1.522$ $0.988$ $0.859$ $1.203$ $0.356$ $v_7$ $0.150$ $0.296$ $0.206$ $0.064$ $0.118$ $0.166$ $0.089$ $v_8$ $0.300$ $0.232$ $0.116$ $0.251$ $0.311$ $0.242$ $0.078$ $v_9$ $0.228$ $0.232$ $0.446$ $0.197$ $0.201$ $0.260$ $0.103$ $v_{10}$ $0.129$ $0.140$ $0.070$ $0.089$ $0.081$ $0.102$ $0.031$ Source: Audited report of individual commercial bank
 $Ratio$ $Khan$ $TDB$ $XAC$ $State$ $Golomt$ $Mean$ $Stdev$ $v_1$ $0.564$ $0.520$ $0.545$ $0.409$ $0.528$ $0.513$ $0.061$ $v_2$ $0.457$ $0.403$ $0.442$ $0.599$ $0.445$ $0.469$ $0.075$ $v_3$ $0.405$ $0.253$ $0.358$ $0.496$ $0.412$ $0.385$ $0.089$ $v_4$ $0.477$ $0.452$ $0.483$ $0.362$ $0.472$ $0.449$ $0.050$ $v_5$ $0.202$ $0.203$ $0.413$ $0.181$ $0.186$ $0.237$ $0.099$ $v_6$ $0.998$ $1.648$ $1.522$ $0.988$ $0.859$ $1.203$ $0.356$ $v_7$ $0.150$ $0.296$ $0.206$ $0.064$ $0.118$ $0.166$ $0.089$ $v_8$ $0.300$ $0.232$ $0.116$ $0.251$ $0.311$ $0.242$ $0.078$ $v_9$ $0.228$ $0.232$ $0.446$ $0.197$ $0.201$ $0.260$ $0.103$ $v_{10}$ $0.129$ $0.140$ $0.070$ $0.089$ $0.081$ $0.102$ $0.031$ Source: Audited report of individual commercial bank
 [1] Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026 [2] Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial and Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535 [3] Zhongbao Zhou, Ximei Zeng, Helu Xiao, Tiantian Ren, Wenbin Liu. Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1493-1515. doi: 10.3934/jimo.2018106 [4] Yu Yuan, Hui Mi. Robust optimal asset-liability management with penalization on ambiguity. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021121 [5] Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial and Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180 [6] Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial and Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141 [7] Xiaowei Chen, Qianlong Liu, Dan A. Ralescu. A bi-level optimization model for the asset-liability management of insurance companies. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022074 [8] Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial and Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045 [9] Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343 [10] Ling Lin, Dong He, Zhiyi Tan. Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm. Journal of Industrial and Management Optimization, 2008, 4 (4) : 817-826. doi: 10.3934/jimo.2008.4.817 [11] Zongwei Chen. An online-decision algorithm for the multi-period bank clearing problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021091 [12] Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109 [13] Harald Held, Gabriela Martinez, Philipp Emanuel Stelzig. Stochastic programming approach for energy management in electric microgrids. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 241-267. doi: 10.3934/naco.2014.4.241 [14] Behrouz Kheirfam. Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2010, 6 (2) : 347-361. doi: 10.3934/jimo.2010.6.347 [15] Chenchen Wu, Dachuan Xu, Xin-Yuan Zhao. An improved approximation algorithm for the $2$-catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial and Management Optimization, 2012, 8 (1) : 117-126. doi: 10.3934/jimo.2012.8.117 [16] Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 439-456. doi: 10.3934/jimo.2020162 [17] T. W. Leung, Chi Kin Chan, Marvin D. Troutt. A mixed simulated annealing-genetic algorithm approach to the multi-buyer multi-item joint replenishment problem: advantages of meta-heuristics. Journal of Industrial and Management Optimization, 2008, 4 (1) : 53-66. doi: 10.3934/jimo.2008.4.53 [18] Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 [19] Binghai Zhou, Yuanrui Lei, Shi Zong. Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021151 [20] Chuanhao Guo, Erfang Shan, Wenli Yan. A superlinearly convergent hybrid algorithm for solving nonlinear programming. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1009-1024. doi: 10.3934/jimo.2016059

2020 Impact Factor: 1.801

## Tools

Article outline

Figures and Tables