• Previous Article
    A smoothing Newton method preserving nonnegativity for solving tensor complementarity problems with $ P_0 $ mappings
  • JIMO Home
  • This Issue
  • Next Article
    Median location problem with two probabilistic line barriers: Extending the Hook and Jeeves algorithm
doi: 10.3934/jimo.2021155
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Joint emission reduction dynamic optimization and coordination in the supply chain considering fairness concern and reference low-carbon effect

School of Management, Shanghai University, Shanghai, China

* Corresponding author: Liying Yu

Received  April 2021 Revised  May 2021 Early access September 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China (NSFC) under Grants 12071280, 11671250

In the context of low-carbon economy, in order to explore the impact of the fairness concern and reference low-carbon effect on supply chain members' balanced emission reduction decisions and profits, supply chain joint emission reduction dynamic optimization models under four different scenarios are built, in which the manufacturer's optimal emission reduction strategy, the retailer's optimal low-carbon promotion strategy and other equilibrium solutions are solved by differential game theory. On the basis of analysis, a contract is designed to achieve the coordination of the supply chain when members are fairness concern. Some findings are as follows. First, when consumers' purchasing behavior is significantly affected by the reference low-carbon effect, and they have higher expectations for the product's emission reduction level, consumers' reference low-carbon effect will discourage the manufacturer's enthusiasm to reduce emissions, and do harm to the profits of the manufacturer and the retailer. Second, the fairness concern behavior of both parties will aggravate the adverse effects of reference low-carbon effect, bring a detrimental effect on the performance of the supply chain, aggravate the double marginal effect of the supply chain, and cause continuous negative social influence. Third, the bilateral cost-sharing contract can encourage the manufacturer to increase emission reduction investment, the retailer to increase low-carbon promotion investment, and can achieve a Pareto improvement of both parties' profits and utilities. In addition, the two cost-sharing ratios are only proportional to the marginal revenue and fairness concern intensity of both parties. Finally, when the two cost-sharing ratios and the revenue-sharing coefficient meet a certain relationship and are within a reasonable range, the bilateral cost sharing-revenue sharing hybrid contract can reduce the double marginal effect and achieve supply chain coordination.

Citation: Ziyuan Zhang, Liying Yu. Joint emission reduction dynamic optimization and coordination in the supply chain considering fairness concern and reference low-carbon effect. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021155
References:
[1]

C. K. AndersonH. Rasmussen and L. Macdonald, Competitive pricing with dynamic asymmetric price effects, Int. Trans. Oper. Res., 12 (2005), 509-525.  doi: 10.1111/j.1475-3995.2005.00522.x.

[2]

E. BendolyK. Donohue and K. L. Schultz, Behavior in operations management: Assessing recent findings and revisiting old assumptions, J. Operations Management, 24 (2006), 737-752. 

[3]

S. BenjaafarY. Z. Li and M. Daskin, Carbon footprint and the management of supply chains: Insights from simple models, IEEE Transactions on Automation Science and Engineering, 10 (2013), 99-116. 

[4]

K. Y. CaoB. XuY. He and Q. Y. Xu, Optimal carbon reduction level and ordering quantity under financial constraints, Int. Trans. Oper. Res., 27 (2020), 2270-2293.  doi: 10.1111/itor.12606.

[5]

C. Y. DyeC. T. Yang and C. C. Wu, Joint dynamic pricing and preservation technology investment for an integrated supply chain with reference price effects, J. Operational Research Society, 69 (2018), 811-824. 

[6]

S. F. DuL. Hu and L. Wang, Low-carbon supply policies and supply chain performance with carbon concerned demand, Ann. Oper. Res., 255 (2017), 569-590.  doi: 10.1007/s10479-015-1988-0.

[7]

S. F. DuC. Du and L. Liang, Supply chain coordination considering fairness concerns, Journal of Management Sciences in China, 13 (2010), 41-48. 

[8]

G. FibichA. Gavious and O. Lowengart, Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Oper. Res., 51 (2003), 721-734.  doi: 10.1287/opre.51.5.721.16758.

[9]

A. Gavious and O. Lowengart, Price-quality relationship in the presence of asymmetric dynamic reference quality effects, Marketing Letters, 23 (2012), 137-161. 

[10]

D. Ghosh and J. Shah, Supply chain analysis under green sensitive consumer demand and cost sharing contract, International Journal of Production Economics, 164 (2015), 319-329. 

[11]

H. HuangJ. ZhangX. Ren and X. Zhou, Greenness and pricing decisions of cooperative supply chains considering altruistic preferences, Int. Journal of Environmental Research and Public Health, 16 (2019), 51. 

[12]

Q. HanY. Y. WangL. Shen and Y. Wang, Decision and coordination of low-carbon e-commerce supply chain with government carbon subsidies and fairness concerns, Complexity, 2020 (2020), 1-19. 

[13]

W. Jiang and X. Chen, Optimal strategies for low carbon supply chain with strategic customer behavior and green technology investment, Discrete Dyn. Nat. Soc., 2016 (2016), 1-13.  doi: 10.1155/2016/9645087.

[14]

P. K. Kopalle and R. S. Winer, A dynamic model of reference price and expected quality, Marketing Letters, 7 (1996), 41-52. 

[15]

G. W. LiuS. P. Sethi and J. X. Zhang, Myopic vs. far-sighted behaviours in a revenue-sharing supply chain with reference quality effects, International J. Production Research, 54 (2018), 1334-1357. 

[16]

Z. LiuL. L. Langb. HuL. H. ShiB. T. Huang and Y. J. Zhao, Emission reduction decision of agricultural supply chain considering carbon tax and investment cooperation, J. Cleaner Production, 294 (2021), 126305. 

[17]

L. Liu and F. T. Li, Differential game modelling of joint carbon reduction strategy and contract coordination based on low-carbon reference of consumers, J. Cleaner Production, 277 (2020), 123798. 

[18]

Z. LiuX. X. ZhengB. G. Gong and G. Y. Miao, Joint decision-making and the coordination of a sustainable supply chain in the context of carbon tax regulation and fairness concerns, International Journal of Environmental Research and Public Health, 14 (2017), 1464. 

[19]

C. H. Loch and Y. Z. Wu, Social preferences and supply chain performance: An experimental study, Management Science, 54 (2008), 1835-1849. 

[20]

L. H. LuQ. L. GouW. S. Tang and J. X. Zhang, Joint pricing and advertising strategy with reference price effect, International Journal of Production Research, 54 (2016), 5250-5270. 

[21]

Z. B. Lin, Price promotion with reference price effects in supply chain, Transportation Research Part E-Logistics and Transportation Review, 85 (2016), 52-68. 

[22]

Q. Q. LiT. J. Xiao and Y. Z. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns, J. Cleaner Production, 190 (2018), 303-314. 

[23]

X. J. PuZ. P. Song and G. H. Han, Competition among supply chains and governmental policy: Considering consumers' low-carbon preference, International Journal of Environmental Research and Public Health, 15 (2018), 1985. 

[24]

X. H. QianF. T. S. ChanJ. H. ZhangM. Yin and Q. Zhang, Channel coordination of a two-echelon sustainable supply chain with a fair-minded retailer under cap-and-trade regulation, J. Cleaner Production, 244 (2020), 118715. 

[25]

Y. Y. WangR. J. FanL. Shen and M. Z. Jin, Decisions and coordination of green e-commerce supply chain considering green manufacturer's fairness concerns, International J. Production Research, 58 (2020), 7471-7489. 

[26]

Z. R. WangA. E. I. Brownlee and Q. H. Wu, Production and joint emission reduction decisions based on two-way cost-sharing contract under cap-and-trade regulation, Computers & Industrial Engineering, 146 (2020), 106549. 

[27]

C. X. WangW. Wang and R. B. Huang, Supply chain enterprise operations and government carbon tax decisions considering carbon emissions, J. Cleaner Production, 152 (2017), 271-280. 

[28]

J. WangX. X. ChengX. Y. WangH. T. Yang and S. H. Zhang, Myopic versus farsighted behaviors in a low-carbon supply chain with reference emission effects, Complexity, 2019 (2019), 3123572. 

[29]

L. J. Xia, Y. W. Bai, S. Ghose and J. J. Qin, Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences, Annals of Operations Research, 2020. doi: 10.1007/s10479-020-03838-8.

[30]

L. J. XiaT. T. GuoJ. J. QinX. Yue and Z. Ning, Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system, Ann. Oper. Res., 268 (2018), 149-175.  doi: 10.1007/s10479-017-2657-2.

[31]

J. Xu and N. Liu, Erratum to: Research on closed loop supply chain with reference price effect, J. Intelligent Manufacturing, 28 (2017), 51-64. 

[32]

B. Q. YuJ. WangX. M. Lu and H. T. Yang, Collaboration in a low-carbon supply chain with reference emission and cost learning effects: Cost sharing versus revenue sharing strategies, Journal of Cleaner Production, 250 (2020), 119460. 

[33]

S. Yu and Q. Hou, Supply chain investment in carbon emission-reducing technology based on stochasticity and low-carbon preferences, Complexity, 2021 (2021), 1-18. 

[34]

H. Q. ZhangP. LiH. Zheng and Y. X. Zhang, Impact of carbon tax on enterprise operation and production strategy for low-carbon products in a co-opetition supply chain, J. Cleaner Production, 287 (2021), 125058. 

[35]

L. H. ZhangJ. G. Wang and J. X. You, Consumer environmental awareness and channel coordination with two substitutable products, European J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.

[36]

Z. C. ZhangQ. ZhangZ. Liu and X. X. Zheng, Static and dynamic pricing strategies in a closed-loop supply chain with reference quality effects, Sustainability, 10 (2018), 157. 

[37]

Z. Y. ZhangD. X. Fu and Q. Zhou, Optimal decisions of a green supply chain under the joint action of fairness preference and subsidy to the manufacturer, Discrete Dyn. Nat. Soc., 2020 (2020), 1-18.  doi: 10.1155/2020/9610503.

[38]

Z. Y. Zhang and L. Y. Yu, Dynamic optimization and coordination of cooperative emission reduction in a dual-channel supply chain considering reference low-carbon effect and low-carbon goodwill, International Journal of Environmental Research and Public Health, 18 (2021), 539. 

[39]

J. ZhangW. Y. K. Chiang and L. Liang, Strategic pricing with reference effects in a competitive supply chain, Omega-International Journal of Management Science, 44 (2014), 126-135. 

[40]

J. ZhangQ. L. GouL. Liang and Z. Huang, Supply chain coordination through cooperative advertising with reference price effect, Omega-International Journal of Management Science, 41 (2013), 345-353. 

[41]

L. H. ZhangB. W. Xue and X. Y. Liu, Carbon emission reduction with regard to retailer's fairness concern and subsidies, Sustainability, 10 (2018), 1209. 

[42]

Y. Zhang, J. Y. Li and B. Xu, Designing buy-online-and-pick-up-in-store (bops) contract of dual-channel low-carbon supply chain considering consumers' low-carbon preference, Math. Probl. Eng., 2020 (2020), 15pp. doi: 10.1155/2020/7476019.

[43]

X. D. ZhouB. XuF. Xie and L. Yu, Research on quality decisions and coordination with reference effect in dual-channel supply chain, Sustainability, 12 (2020), 2296. 

[44]

Y. J. ZhouM. J. BaoX. H. Chen and X. H. Xu, Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns, J. Cleaner Production, 133 (2016), 402-413. 

[45]

H. ZouJ. Qin and B. Dai, Optimal pricing decisions for a low-carbon supply chain considering fairness concern under carbon quota policy, International Journal of Environmental Research and Public Health, 18 (2021), 556. 

[46]

Y. Zu and L. Chen, Myopic versus far-sighted behaviors in dynamic supply chain coordination through advertising with reference price effect, Discrete Dyn. Nat. Soc., 2017 (2017), 1-15.  doi: 10.1155/2017/9759561.

show all references

References:
[1]

C. K. AndersonH. Rasmussen and L. Macdonald, Competitive pricing with dynamic asymmetric price effects, Int. Trans. Oper. Res., 12 (2005), 509-525.  doi: 10.1111/j.1475-3995.2005.00522.x.

[2]

E. BendolyK. Donohue and K. L. Schultz, Behavior in operations management: Assessing recent findings and revisiting old assumptions, J. Operations Management, 24 (2006), 737-752. 

[3]

S. BenjaafarY. Z. Li and M. Daskin, Carbon footprint and the management of supply chains: Insights from simple models, IEEE Transactions on Automation Science and Engineering, 10 (2013), 99-116. 

[4]

K. Y. CaoB. XuY. He and Q. Y. Xu, Optimal carbon reduction level and ordering quantity under financial constraints, Int. Trans. Oper. Res., 27 (2020), 2270-2293.  doi: 10.1111/itor.12606.

[5]

C. Y. DyeC. T. Yang and C. C. Wu, Joint dynamic pricing and preservation technology investment for an integrated supply chain with reference price effects, J. Operational Research Society, 69 (2018), 811-824. 

[6]

S. F. DuL. Hu and L. Wang, Low-carbon supply policies and supply chain performance with carbon concerned demand, Ann. Oper. Res., 255 (2017), 569-590.  doi: 10.1007/s10479-015-1988-0.

[7]

S. F. DuC. Du and L. Liang, Supply chain coordination considering fairness concerns, Journal of Management Sciences in China, 13 (2010), 41-48. 

[8]

G. FibichA. Gavious and O. Lowengart, Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Oper. Res., 51 (2003), 721-734.  doi: 10.1287/opre.51.5.721.16758.

[9]

A. Gavious and O. Lowengart, Price-quality relationship in the presence of asymmetric dynamic reference quality effects, Marketing Letters, 23 (2012), 137-161. 

[10]

D. Ghosh and J. Shah, Supply chain analysis under green sensitive consumer demand and cost sharing contract, International Journal of Production Economics, 164 (2015), 319-329. 

[11]

H. HuangJ. ZhangX. Ren and X. Zhou, Greenness and pricing decisions of cooperative supply chains considering altruistic preferences, Int. Journal of Environmental Research and Public Health, 16 (2019), 51. 

[12]

Q. HanY. Y. WangL. Shen and Y. Wang, Decision and coordination of low-carbon e-commerce supply chain with government carbon subsidies and fairness concerns, Complexity, 2020 (2020), 1-19. 

[13]

W. Jiang and X. Chen, Optimal strategies for low carbon supply chain with strategic customer behavior and green technology investment, Discrete Dyn. Nat. Soc., 2016 (2016), 1-13.  doi: 10.1155/2016/9645087.

[14]

P. K. Kopalle and R. S. Winer, A dynamic model of reference price and expected quality, Marketing Letters, 7 (1996), 41-52. 

[15]

G. W. LiuS. P. Sethi and J. X. Zhang, Myopic vs. far-sighted behaviours in a revenue-sharing supply chain with reference quality effects, International J. Production Research, 54 (2018), 1334-1357. 

[16]

Z. LiuL. L. Langb. HuL. H. ShiB. T. Huang and Y. J. Zhao, Emission reduction decision of agricultural supply chain considering carbon tax and investment cooperation, J. Cleaner Production, 294 (2021), 126305. 

[17]

L. Liu and F. T. Li, Differential game modelling of joint carbon reduction strategy and contract coordination based on low-carbon reference of consumers, J. Cleaner Production, 277 (2020), 123798. 

[18]

Z. LiuX. X. ZhengB. G. Gong and G. Y. Miao, Joint decision-making and the coordination of a sustainable supply chain in the context of carbon tax regulation and fairness concerns, International Journal of Environmental Research and Public Health, 14 (2017), 1464. 

[19]

C. H. Loch and Y. Z. Wu, Social preferences and supply chain performance: An experimental study, Management Science, 54 (2008), 1835-1849. 

[20]

L. H. LuQ. L. GouW. S. Tang and J. X. Zhang, Joint pricing and advertising strategy with reference price effect, International Journal of Production Research, 54 (2016), 5250-5270. 

[21]

Z. B. Lin, Price promotion with reference price effects in supply chain, Transportation Research Part E-Logistics and Transportation Review, 85 (2016), 52-68. 

[22]

Q. Q. LiT. J. Xiao and Y. Z. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns, J. Cleaner Production, 190 (2018), 303-314. 

[23]

X. J. PuZ. P. Song and G. H. Han, Competition among supply chains and governmental policy: Considering consumers' low-carbon preference, International Journal of Environmental Research and Public Health, 15 (2018), 1985. 

[24]

X. H. QianF. T. S. ChanJ. H. ZhangM. Yin and Q. Zhang, Channel coordination of a two-echelon sustainable supply chain with a fair-minded retailer under cap-and-trade regulation, J. Cleaner Production, 244 (2020), 118715. 

[25]

Y. Y. WangR. J. FanL. Shen and M. Z. Jin, Decisions and coordination of green e-commerce supply chain considering green manufacturer's fairness concerns, International J. Production Research, 58 (2020), 7471-7489. 

[26]

Z. R. WangA. E. I. Brownlee and Q. H. Wu, Production and joint emission reduction decisions based on two-way cost-sharing contract under cap-and-trade regulation, Computers & Industrial Engineering, 146 (2020), 106549. 

[27]

C. X. WangW. Wang and R. B. Huang, Supply chain enterprise operations and government carbon tax decisions considering carbon emissions, J. Cleaner Production, 152 (2017), 271-280. 

[28]

J. WangX. X. ChengX. Y. WangH. T. Yang and S. H. Zhang, Myopic versus farsighted behaviors in a low-carbon supply chain with reference emission effects, Complexity, 2019 (2019), 3123572. 

[29]

L. J. Xia, Y. W. Bai, S. Ghose and J. J. Qin, Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences, Annals of Operations Research, 2020. doi: 10.1007/s10479-020-03838-8.

[30]

L. J. XiaT. T. GuoJ. J. QinX. Yue and Z. Ning, Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system, Ann. Oper. Res., 268 (2018), 149-175.  doi: 10.1007/s10479-017-2657-2.

[31]

J. Xu and N. Liu, Erratum to: Research on closed loop supply chain with reference price effect, J. Intelligent Manufacturing, 28 (2017), 51-64. 

[32]

B. Q. YuJ. WangX. M. Lu and H. T. Yang, Collaboration in a low-carbon supply chain with reference emission and cost learning effects: Cost sharing versus revenue sharing strategies, Journal of Cleaner Production, 250 (2020), 119460. 

[33]

S. Yu and Q. Hou, Supply chain investment in carbon emission-reducing technology based on stochasticity and low-carbon preferences, Complexity, 2021 (2021), 1-18. 

[34]

H. Q. ZhangP. LiH. Zheng and Y. X. Zhang, Impact of carbon tax on enterprise operation and production strategy for low-carbon products in a co-opetition supply chain, J. Cleaner Production, 287 (2021), 125058. 

[35]

L. H. ZhangJ. G. Wang and J. X. You, Consumer environmental awareness and channel coordination with two substitutable products, European J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.

[36]

Z. C. ZhangQ. ZhangZ. Liu and X. X. Zheng, Static and dynamic pricing strategies in a closed-loop supply chain with reference quality effects, Sustainability, 10 (2018), 157. 

[37]

Z. Y. ZhangD. X. Fu and Q. Zhou, Optimal decisions of a green supply chain under the joint action of fairness preference and subsidy to the manufacturer, Discrete Dyn. Nat. Soc., 2020 (2020), 1-18.  doi: 10.1155/2020/9610503.

[38]

Z. Y. Zhang and L. Y. Yu, Dynamic optimization and coordination of cooperative emission reduction in a dual-channel supply chain considering reference low-carbon effect and low-carbon goodwill, International Journal of Environmental Research and Public Health, 18 (2021), 539. 

[39]

J. ZhangW. Y. K. Chiang and L. Liang, Strategic pricing with reference effects in a competitive supply chain, Omega-International Journal of Management Science, 44 (2014), 126-135. 

[40]

J. ZhangQ. L. GouL. Liang and Z. Huang, Supply chain coordination through cooperative advertising with reference price effect, Omega-International Journal of Management Science, 41 (2013), 345-353. 

[41]

L. H. ZhangB. W. Xue and X. Y. Liu, Carbon emission reduction with regard to retailer's fairness concern and subsidies, Sustainability, 10 (2018), 1209. 

[42]

Y. Zhang, J. Y. Li and B. Xu, Designing buy-online-and-pick-up-in-store (bops) contract of dual-channel low-carbon supply chain considering consumers' low-carbon preference, Math. Probl. Eng., 2020 (2020), 15pp. doi: 10.1155/2020/7476019.

[43]

X. D. ZhouB. XuF. Xie and L. Yu, Research on quality decisions and coordination with reference effect in dual-channel supply chain, Sustainability, 12 (2020), 2296. 

[44]

Y. J. ZhouM. J. BaoX. H. Chen and X. H. Xu, Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns, J. Cleaner Production, 133 (2016), 402-413. 

[45]

H. ZouJ. Qin and B. Dai, Optimal pricing decisions for a low-carbon supply chain considering fairness concern under carbon quota policy, International Journal of Environmental Research and Public Health, 18 (2021), 556. 

[46]

Y. Zu and L. Chen, Myopic versus far-sighted behaviors in dynamic supply chain coordination through advertising with reference price effect, Discrete Dyn. Nat. Soc., 2017 (2017), 1-15.  doi: 10.1155/2017/9759561.

Figure 1.  The impact of the bilateral cost sharing-revenue sharing hybrid contract.(a)the effect of $ \tau_m $ and $ \tau_r $ on $ \theta $.(b)the effect of $ \theta $ on both parties' profits
Figure 2.  (a) The evolution path of low-carbon goodwill $ G(t) $.(b)The evolution path of reference low-carbon level $ R(t) $
Figure 3.  (a) The evolution path of the manufacturer's profit $ \pi_m(t) $.(b)The evolution path of the retailer's profit $ \pi_r(t) $.(c) The evolution path of overall supply chain profit $ \pi_{sc}(t) $.(d) The evolution path of the manufacturer's utility $ U_m(t) $.(e) The evolution path of the retailer's utility $ U_r(t) $.(f) The evolution path of the utility difference $ \Delta U(t) $
Figure 4.  (a) The impact of $ \tau_m $ and $ \tau_r $ on the low-carbon promotion cost-sharing ratio.(b)The impact of $ \tau_m $ and $ \tau_r $ on the emission reduction cost-sharing ratio.(c) The impact of $ \tau_m $ and $ \tau_r $ on the manufacturer's emission reduction investment.(d) The impact of $ \tau_m $ and $ \tau_r $ on the retailer's low-carbon promotion investment.(e) The impact of $ \tau_m $ and $ \tau_r $ on the manufacturer's profit $ \pi_m^f $. (f) The impact of $ \tau_m $ and $ \tau_r $ on the retailer's profit $ \pi_r^f $
Figure 5.  (a) The impact of $ \epsilon $ on the manufacturer's emission reduction investment.(b)The impact of $ \alpha $ and $ \epsilon $ on the manufacturer's emission reduction investment.(c) The impact of $ \tau_m $ and $ \epsilon $ on the manufacturer's emission reduction investment.(d) The impact of $ \tau_m $ and $ \alpha $ on the manufacturer's emission reduction investment.(e) The impact of $ \alpha $ and $ \epsilon $ on the manufacturer's profit $ \pi_m^f $. (f) The impact of $ \alpha $ and $ \epsilon $ on the retailer's profit $ \pi_r^f $.(g) The impact of initial reference low-carbon level $ R_0 $ on the manufacturer's profit.(h) The impact of initial reference low-carbon level $ R_0 $ on the retailer's profit
Table 1.  Some literature most relevant to this paper
Author Reference Low Carbon on Effect Fairness Concern Low Carbon Goodwill Supply Chain Coordination
Wang et al. [28] $\surd$
Liu et al. [18] $\surd$ $\surd$
Yu et al. [32] $\surd$
Zhang et al. [41] $\surd$
Zou et al. [45] $\surd$
This paper $\surd$ $\surd$ $\surd$ $\surd$
Author Reference Low Carbon on Effect Fairness Concern Low Carbon Goodwill Supply Chain Coordination
Wang et al. [28] $\surd$
Liu et al. [18] $\surd$ $\surd$
Yu et al. [32] $\surd$
Zhang et al. [41] $\surd$
Zou et al. [45] $\surd$
This paper $\surd$ $\surd$ $\surd$ $\surd$
Table 2.  Related parameters and decision variables
Decision variables Definition
$ E(t) $ Manufacturer's emission reduction investment at time $ t $
$ A(t) $ Retailer's low-carbon promotion investment at time $ t $
Parameters Definition
$ \alpha $ Influence coefficient of reference low-carbon effect on the demand
$ \beta $ Influence coefficient of manufacturer's emission reduction on the demand
$ k $ Influence coefficient of retailer's low-carbon promotion on the demand
$ \rho $ Discount rate
$ \mu $ Influence coefficient of low-carbon goodwill on the demand
$ \pi_1 $ Manufacturer's marginal revenue
$ \pi_2 $ Retailer's marginal revenue
$ G(t) $ Low-carbon goodwill level at time $ t $
$ R(t) $ Consumer's reference low-carbon level at time $ t $
$ \lambda $ Influence coefficient of the low-carbon promotion on the low-carbon goodwill
$ \sigma $ Natural decay rate of low-carbon goodwill
$ \epsilon $ Memory parameter
$ \phi $ Low-carbon promotion Cost-sharing ratio
$ \gamma $ Emission reduction cost-sharing ratio
$ \theta $ Revenue-sharing coefficient under the supply chain coordination
$ \tau_m $ Manufacturer's fairness concern intensity
$ \tau_r $ Retailer's fairness concern intensity
$ \eta_m $, $ \eta_r $ Emission reduction cost coefficient and low-carbon promotion cost coefficient.
Decision variables Definition
$ E(t) $ Manufacturer's emission reduction investment at time $ t $
$ A(t) $ Retailer's low-carbon promotion investment at time $ t $
Parameters Definition
$ \alpha $ Influence coefficient of reference low-carbon effect on the demand
$ \beta $ Influence coefficient of manufacturer's emission reduction on the demand
$ k $ Influence coefficient of retailer's low-carbon promotion on the demand
$ \rho $ Discount rate
$ \mu $ Influence coefficient of low-carbon goodwill on the demand
$ \pi_1 $ Manufacturer's marginal revenue
$ \pi_2 $ Retailer's marginal revenue
$ G(t) $ Low-carbon goodwill level at time $ t $
$ R(t) $ Consumer's reference low-carbon level at time $ t $
$ \lambda $ Influence coefficient of the low-carbon promotion on the low-carbon goodwill
$ \sigma $ Natural decay rate of low-carbon goodwill
$ \epsilon $ Memory parameter
$ \phi $ Low-carbon promotion Cost-sharing ratio
$ \gamma $ Emission reduction cost-sharing ratio
$ \theta $ Revenue-sharing coefficient under the supply chain coordination
$ \tau_m $ Manufacturer's fairness concern intensity
$ \tau_r $ Retailer's fairness concern intensity
$ \eta_m $, $ \eta_r $ Emission reduction cost coefficient and low-carbon promotion cost coefficient.
Table 3.  The relationship between related parameters
$ \pi_1 $ $ \pi_2 $ $ \tau_m $ $ \tau_r $ $ \eta_m $ $ \eta_r $ $ \alpha $ $ \beta $ $ k $ $ \epsilon $ $ \sigma $ $ \lambda $ $ \mu $ $ \rho $
$ E $ $ + $ $ - $ $ - $ $ \times $ $ - $ $ \times $ $ + $ $ + $ $ \times $ $ - $ $ \times $ $ \times $ $ \times $ $ + $
$ A $ $ - $ $ + $ $ \times $ $ - $ $ \times $ $ - $ $ \times $ $ \times $ $ + $ $ \times $ $ - $ $ + $ $ + $ $ - $
$ G_{\infty} $ $ - $ $ + $ $ \times $ $ - $ $ \times $ $ - $ $ \times $ $ \times $ $ + $ $ \times $ $ - $ $ + $ $ + $ $ - $
$ R_{\infty} $ $ + $ $ - $ $ - $ $ \times $ $ - $ $ \times $ $ + $ $ + $ $ \times $ $ - $ $ \times $ $ \times $ $ \times $ $ + $
$ \pi_1 $ $ \pi_2 $ $ \tau_m $ $ \tau_r $ $ \eta_m $ $ \eta_r $ $ \alpha $ $ \beta $ $ k $ $ \epsilon $ $ \sigma $ $ \lambda $ $ \mu $ $ \rho $
$ E $ $ + $ $ - $ $ - $ $ \times $ $ - $ $ \times $ $ + $ $ + $ $ \times $ $ - $ $ \times $ $ \times $ $ \times $ $ + $
$ A $ $ - $ $ + $ $ \times $ $ - $ $ \times $ $ - $ $ \times $ $ \times $ $ + $ $ \times $ $ - $ $ + $ $ + $ $ - $
$ G_{\infty} $ $ - $ $ + $ $ \times $ $ - $ $ \times $ $ - $ $ \times $ $ \times $ $ + $ $ \times $ $ - $ $ + $ $ + $ $ - $
$ R_{\infty} $ $ + $ $ - $ $ - $ $ \times $ $ - $ $ \times $ $ + $ $ + $ $ \times $ $ - $ $ \times $ $ \times $ $ \times $ $ + $
[1]

Jianxin Chen, Lin Sun, Tonghua Zhang, Rui Hou. Low carbon joint strategy and coordination for a dyadic supply chain with Nash bargaining fairness. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021229

[2]

Qingguo Bai, Fanwen Meng. Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1943-1965. doi: 10.3934/jimo.2019037

[3]

Guangzhou Yan, Qinyu Song, Yaodong Ni, Xiangfeng Yang. Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021181

[4]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial and Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[5]

Jian Liu, Xin Wu, Jiang-Ling Lei. The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021090

[6]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1999-2027. doi: 10.3934/jimo.2019040

[7]

Huimin Liu, Hui Yu. Fairness and retailer-led supply chain coordination under two different degrees of trust. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1347-1364. doi: 10.3934/jimo.2016076

[8]

Tinghai Ren, Kaifu Yuan, Dafei Wang, Nengmin Zeng. Effect of service quality on software sales and coordination mechanism in IT service supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021165

[9]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial and Management Optimization, 2022, 18 (2) : 713-730. doi: 10.3934/jimo.2020175

[10]

Yang Yang, Guanxin Yao. Fresh agricultural products supply chain coordination considering consumers' dual preferences under carbon cap-and-trade mechanism. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022032

[11]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[12]

Chong Zhang, Yaxian Wang, Haiyan Wang. Design of an environmental contract under trade credits and carbon emission reduction. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021141

[13]

Ying Wang, Haohao Song. A game theoretic strategic model for understanding the online-offline competition and fairness concern under community group buying. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022012

[14]

Binbin Cao, Zhongdong Xiao, Xiaojun Li. Joint decision on pricing and waste emission level in industrial symbiosis chain. Journal of Industrial and Management Optimization, 2018, 14 (1) : 135-164. doi: 10.3934/jimo.2017040

[15]

You Zhao, Zibin Cui, Jianxin Chen, Rui Hou. Pricing and quality decisions in a supply chain with consumers' privacy concern. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021226

[16]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[17]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[18]

Chao Zhao, Jixiang Song. Coordination of dual-channel supply chain considering differential pricing and loss-aversion based on quality control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022053

[19]

Solaleh Sadat Kalantari, Maryam Esmaeili, Ata Allah Taleizadeh. Selling by clicks or leasing by bricks? A dynamic game for pricing durable products in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021221

[20]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial and Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]