American Institute of Mathematical Sciences

January  2022, 18(1): 693-712. doi: 10.3934/jimo.2021159

Parameter optimal identification and dynamic behavior analysis of nonlinear model for the solution purification process of zinc hydrometallurgy

 1 College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, China 2 College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China 3 College of Electrical and Information Engineering, Key Laboratory of Gansu Advanced Control for Industrial Processes, National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou, 730050, China

* Corresponding author: Aimin An, Ph.D Professor; Email: anaiminll@163.com; ORCID:0000-0003-3607-6536

Received  March 2021 Revised  June 2021 Published  January 2022 Early access  September 2021

Impurity removal is a momentous part of zinc hydrometallurgy process, and the quality of products and the stability of the whole process are affected directly by its control effect. The application of dynamic model is of great significance to the prediction of key indexes and the optimization of process control. In this paper, considering the complex coupling relationship of stage II purification process, a hybrid modeling method of mechanism modeling and parameter identification modeling was proposed on the basis of not changing the actual production process of lead-zinc smeltery. Firstly, the overall nonlinear dynamic mechanism model was established, and then the deviation between the theoretical value and the actual detected outlet ion concentration was taken as the objective function to establish the parameter identification optimization model. Since the built model is nonlinear, it may pose implementation problems. On the premise of deriving the gradient vector and Hessian matrix of the objective function with respect to the parameter vector, an optimization algorithm based on the steepest descent method and Newton method is proposed. Finally, using the historical production data of a lead-zinc smeltery in China, the model parameters were accurately inversed. An intensive simulation validation and analysis of the dynamic characteristics about the whole model shows the accuracy and the potential of the model, also in the perspective of practical implementation, which provides the basis for the optimal control of system output and the guidance for the optimal control of zinc powder addition.

Citation: Qianqian Wang, Minan Tang, Aimin An, Jiawei Lu, Yingying Zhao. Parameter optimal identification and dynamic behavior analysis of nonlinear model for the solution purification process of zinc hydrometallurgy. Journal of Industrial & Management Optimization, 2022, 18 (1) : 693-712. doi: 10.3934/jimo.2021159
References:

show all references

References:
Flow chart of roasting, leaching and purification process of a lead-zinc smeltery
Temperature profiles of stage II solution purification in a lead-zinc smeltery
The equivalent CSTR model
Flow chart of solution algorithm for parameter identification model
Stage II purification reaction tank of zinc hydrometallurgy in a lead-zinc smeltery
Deviation function profile and parameter increment profile in solving process.(a)Deviation function profile; (b)Parameter increment profile
Nonlinear dynamic system model of the stage II purification process
Response profiles of outlet ion concentration.(a)Response profile of cobalt ion concentration; (b)Response profile of cadmium ion concentration
Variation profiles of outlet ion concentration when ${u_{\rm{b}}}$ is constant and ${u_{\rm{a}}}$ is variable.(a)Cobalt ion concentration at the outlet; (b)Cadmium ion concentration at the outlet
Variation profiles of outlet ion concentration when ${u_{\rm{a}}}$ is constant and ${u_{\rm{b}}}$ is variable.(a)Cobalt ion concentration at the outlet; (b)Cadmium ion concentration at the outlet
Variation profiles of outlet ion concentration when ${u_{\rm{a}}}$ and ${u_{\rm{b}}}$ change
The influence of inlet flow $Q$ on impurity ions concentration.(a) Cobalt ion concentration at the outlet; (b)Cadmium ion concentration at the outlet
Model test results.(a)Comparison of cobalt ion concentration at the outlet; (b) Comparison of cadmium ion concentration at the outlet
Values of relevant parameters in the reaction process
 Parameter Symbol Value Solution flow rate/(${{\rm{m}}^3}/{\rm{h}}$) $Q$ 160 Volume of single reaction tank/${{\rm{m}}^3}$ ${V_p}$ 108 Volume utilization of reaction tank/$\%$ $\backslash$ 80 Area coefficient/(${{\rm{m}}^2}/{\rm{kg}}$) $p$ 174
 Parameter Symbol Value Solution flow rate/(${{\rm{m}}^3}/{\rm{h}}$) $Q$ 160 Volume of single reaction tank/${{\rm{m}}^3}$ ${V_p}$ 108 Volume utilization of reaction tank/$\%$ $\backslash$ 80 Area coefficient/(${{\rm{m}}^2}/{\rm{kg}}$) $p$ 174
Characteristics of sample data
 Data type Symbol Average value Maximum value Minimum value Inlet cobalt ion concentration/(${\rm{mg/L}}$) ${x_{{\rm{a0}}}}$ 35.251 51.190 13.382 Inlet cadmium ion concentration/(${\rm{mg/L}}$) ${x_{{\rm{b0}}}}$ 298.278 433.148 113.229 Outlet cobalt ion concentration/(${\rm{mg/L}}$) ${\bar x_{\rm{a}}}$ 0.439 0.945 0.257 Outlet cadmium ion concentration/(${\rm{mg/L}}$) ${\bar x_b}$ 15.772 58.943 1.449
 Data type Symbol Average value Maximum value Minimum value Inlet cobalt ion concentration/(${\rm{mg/L}}$) ${x_{{\rm{a0}}}}$ 35.251 51.190 13.382 Inlet cadmium ion concentration/(${\rm{mg/L}}$) ${x_{{\rm{b0}}}}$ 298.278 433.148 113.229 Outlet cobalt ion concentration/(${\rm{mg/L}}$) ${\bar x_{\rm{a}}}$ 0.439 0.945 0.257 Outlet cadmium ion concentration/(${\rm{mg/L}}$) ${\bar x_b}$ 15.772 58.943 1.449
Inlet ion concentration values
 Inlet ion Symbol Value Cobalt ion/(${\rm{g/L}}$) ${x_{{\rm{a0}}}}$ 0.035 Cadmium ion/(${\rm{g/L}}$) ${x_{{\rm{b0}}}}$ 0.298
 Inlet ion Symbol Value Cobalt ion/(${\rm{g/L}}$) ${x_{{\rm{a0}}}}$ 0.035 Cadmium ion/(${\rm{g/L}}$) ${x_{{\rm{b0}}}}$ 0.298
Model error results
 Error Model in this paper Original model [8] Reformulated model [8] Maximum error (Cobalt ion) /${\rm{\% }}$ 31.12 49.10 32.27 Maximum error (Cadmium ion)/${\rm{\% }}$ 24.40 $\backslash$ $\backslash$ Average error (Cobalt ion)/${\rm{\% }}$ 11.05 13.81 11.90 Average error (Cadmium ion)/${\rm{\% }}$ 10.85 $\backslash$ $\backslash$
 Error Model in this paper Original model [8] Reformulated model [8] Maximum error (Cobalt ion) /${\rm{\% }}$ 31.12 49.10 32.27 Maximum error (Cadmium ion)/${\rm{\% }}$ 24.40 $\backslash$ $\backslash$ Average error (Cobalt ion)/${\rm{\% }}$ 11.05 13.81 11.90 Average error (Cadmium ion)/${\rm{\% }}$ 10.85 $\backslash$ $\backslash$
 [1] Yanan Mao, Caixia Gao, Ruidong Yan, Aruna Bai. Modeling and identification of hybrid dynamic system in microbial continuous fermentation. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 359-368. doi: 10.3934/naco.2015.5.359 [2] Rinaldo M. Colombo, Andrea Corli. Dynamic parameters identification in traffic flow modeling. Conference Publications, 2005, 2005 (Special) : 190-199. doi: 10.3934/proc.2005.2005.190 [3] Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems & Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025 [4] Yuepeng Wang, Yue Cheng, I. Michael Navon, Yuanhong Guan. Parameter identification techniques applied to an environmental pollution model. Journal of Industrial & Management Optimization, 2018, 14 (2) : 817-831. doi: 10.3934/jimo.2017077 [5] Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5661-5679. doi: 10.3934/dcdsb.2020375 [6] Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471 [7] Barbara Kaltenbacher, William Rundell. On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. Inverse Problems & Imaging, 2021, 15 (5) : 865-891. doi: 10.3934/ipi.2021020 [8] Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417 [9] Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 [10] Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 [11] Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial & Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168 [12] David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305 [13] Ning Chen, Yan Xia Zhao, Jia Yang Dai, Yu Qian Guo, Wei Hua Gui, Jun Jie Peng. Hybrid modeling and distributed optimization control method for the iron removal process. Journal of Industrial & Management Optimization, 2022  doi: 10.3934/jimo.2022003 [14] Chloe A. Fletcher, Jason S. Howell. Dynamic modeling of nontargeted and targeted advertising strategies in an oligopoly. Journal of Dynamics & Games, 2017, 4 (2) : 97-124. doi: 10.3934/jdg.2017007 [15] Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103 [16] Qinxi Bai, Zhijun Li, Lei Wang, Bing Tan, Enmin Feng. Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1463-1478. doi: 10.3934/jimo.2018016 [17] Hedia Fgaier, Hermann J. Eberl. Parameter identification and quantitative comparison of differential equations that describe physiological adaptation of a bacterial population under iron limitation. Conference Publications, 2009, 2009 (Special) : 230-239. doi: 10.3934/proc.2009.2009.230 [18] Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems & Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042 [19] Lekbir Afraites, Aissam Hadri, Amine Laghrib, Mourad Nachaoui. A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2022001 [20] Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi. Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences & Engineering, 2013, 10 (1) : 103-120. doi: 10.3934/mbe.2013.10.103

2020 Impact Factor: 1.801