doi: 10.3934/jimo.2021161
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A study on vector variational-like inequalities using convexificators and application to its bi-level form

Department of Mathematics, University of Central Florida, 4000 Central Blvd, P.O Box 161364, Orlando, Florida 32816-1364, USA

* Corresponding author: Gayatri Pany

Received  October 2020 Revised  July 2021 Early access September 2021

Fund Project: The first author is supported by grant from Mohapatra Family Foundation and the College of Graduate Studies of the University of Central Florida

This paper deals with the weak versions of the vector variational-like inequalities, namely Stampacchia and Minty type under invexity in the framework of convexificators. The connection between both the problems along with the link to vector optimization problem are analyzed. An application to nonconvex mathematical programming has also been presented. Further, the bi-level version of these problems is formulated and a procedure to obtain the solution involving the auxiliary principle technique is described in detail. We have shown that the iterative algorithm with the help of which we get the approximate solution converges strongly to the exact solution of the problem.

Citation: Gayatri Pany, Ram N. Mohapatra. A study on vector variational-like inequalities using convexificators and application to its bi-level form. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021161
References:
[1]

Q. H. Ansari and M. Rezaei, Generalized vector variational-like inequalities and vector optimization in asplund spaces, Optimization, 62 (2013), 721-734.  doi: 10.1080/02331934.2012.669758.  Google Scholar

[2]

T. Antczak, Mean value in invexity analysis, Nonlinear Analysis: Theory, Methods & Applications, 60 (2005), 1473-1484.  doi: 10.1016/j.na.2004.11.005.  Google Scholar

[3]

M. BianchiI. V. Konnov and R. Pini, Lexicographic variational inequalities with applications, Optimization, 56 (2007), 355-367.  doi: 10.1080/02331930600819704.  Google Scholar

[4]

O. ChadliQ. H. Ansari and S. Al-Homidan, Existence of solutions and algorithms for bilevel vector equilibrium problems: An auxiliary principle technique, Journal of Optimization Theory and Applications, 172 (2017), 726-758.  doi: 10.1007/s10957-017-1062-y.  Google Scholar

[5]

S.-L. Chen and N.-J. Huang, Vector variational inequalities and vector optimization problems on hadamard manifolds, Optimization Letters, 10 (2016), 753-767.  doi: 10.1007/s11590-015-0896-1.  Google Scholar

[6]

B. D. Craven and S. M. N. Islam, Dynamic optimization models in finance: Some extensions to the framework, models, and computation, Journal of Industrial & Management Optimization, 10 (2014), 1129-1146.  doi: 10.3934/jimo.2014.10.1129.  Google Scholar

[7]

V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential, Journal of Global Optimization, 10 (1997), 305-326.  doi: 10.1023/A:1008246130864.  Google Scholar

[8]

F. Giannessi, On minty variational principle, in New Trends in Mathematical Programming, vol. 13, Kluwer Acad. Publ., Boston, MA, (1998), 93–99. doi: 10.1007/978-1-4757-2878-1_8.  Google Scholar

[9]

S.-M. Guu and J. Li, Vector variational-like inequalities with generalized bifunctions defined on nonconvex sets, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 2847-2855.  doi: 10.1016/j.na.2009.01.137.  Google Scholar

[10]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[11]

M. A. Hejazi and S. Nobakhtian, Optimality conditions for multiobjective fractional programming, via convexificators, Journal of Industrial & Management Optimization, 16 (2020), 623-631.  doi: 10.3934/jimo.2018170.  Google Scholar

[12]

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, Journal of Optimization Theory and Applications, 101 (1999), 599-621.  doi: 10.1023/A:1021790120780.  Google Scholar

[13]

S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps, Journal of Optimization Theory and Applications, 18 (1976), 445-454.  doi: 10.1007/BF00932654.  Google Scholar

[14]

B. Kohli, Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem, Journal of Industrial & Management Optimization. doi: 10.3934/jimo.2020114.  Google Scholar

[15]

S. Komlósi, Generalized monotonicity and generalized convexity, Journal of Optimization Theory and Applications, 84 (1995), 361-376.  doi: 10.1007/BF02192119.  Google Scholar

[16]

V. Laha and S. K. Mishra, On vector optimization problems and vector variational inequalities using convexificators, Optimization, 66 (2017), 1837-1850.  doi: 10.1080/02331934.2016.1250268.  Google Scholar

[17]

C. S. Lalitha and M. Mehta, Vector variational inequalities with cone-pseudomonotone bifunctions, Optimization, 54 (2005), 327-338.  doi: 10.1080/02331930500100254.  Google Scholar

[18]

F. Lara, Optimality conditions for nonconvex nonsmooth optimization via global derivatives, Journal of Optimization Theory and Applications, 185 (2020), 134-150.  doi: 10.1007/s10957-019-01613-9.  Google Scholar

[19]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[20]

B. B. Upadhyay, P. Mishra, R. N. Mohapatra and S. K. Mishra, On the applications of nonsmooth vector optimization problems to solve generalized vector variational inequalities using convexificators, in World Congress on Global Optimization, Springer, 2019,660–671. doi: 10.1007/978-3-030-21803-4_66.  Google Scholar

[21]

H. WeiC. Chen and B. Wu, Vector network equilibrium problems with uncertain demands and capacity constraints of arcs, Optimization Letters, 15 (2021), 1113-1131.  doi: 10.1007/s11590-020-01610-2.  Google Scholar

[22]

X. Q. Yang and C. J. Goh, On vector variational inequalities: Application to vector equilibria, Journal of Optimization Theory and Applications, 95 (1997), 431-443.  doi: 10.1023/A:1022647607947.  Google Scholar

show all references

References:
[1]

Q. H. Ansari and M. Rezaei, Generalized vector variational-like inequalities and vector optimization in asplund spaces, Optimization, 62 (2013), 721-734.  doi: 10.1080/02331934.2012.669758.  Google Scholar

[2]

T. Antczak, Mean value in invexity analysis, Nonlinear Analysis: Theory, Methods & Applications, 60 (2005), 1473-1484.  doi: 10.1016/j.na.2004.11.005.  Google Scholar

[3]

M. BianchiI. V. Konnov and R. Pini, Lexicographic variational inequalities with applications, Optimization, 56 (2007), 355-367.  doi: 10.1080/02331930600819704.  Google Scholar

[4]

O. ChadliQ. H. Ansari and S. Al-Homidan, Existence of solutions and algorithms for bilevel vector equilibrium problems: An auxiliary principle technique, Journal of Optimization Theory and Applications, 172 (2017), 726-758.  doi: 10.1007/s10957-017-1062-y.  Google Scholar

[5]

S.-L. Chen and N.-J. Huang, Vector variational inequalities and vector optimization problems on hadamard manifolds, Optimization Letters, 10 (2016), 753-767.  doi: 10.1007/s11590-015-0896-1.  Google Scholar

[6]

B. D. Craven and S. M. N. Islam, Dynamic optimization models in finance: Some extensions to the framework, models, and computation, Journal of Industrial & Management Optimization, 10 (2014), 1129-1146.  doi: 10.3934/jimo.2014.10.1129.  Google Scholar

[7]

V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential, Journal of Global Optimization, 10 (1997), 305-326.  doi: 10.1023/A:1008246130864.  Google Scholar

[8]

F. Giannessi, On minty variational principle, in New Trends in Mathematical Programming, vol. 13, Kluwer Acad. Publ., Boston, MA, (1998), 93–99. doi: 10.1007/978-1-4757-2878-1_8.  Google Scholar

[9]

S.-M. Guu and J. Li, Vector variational-like inequalities with generalized bifunctions defined on nonconvex sets, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 2847-2855.  doi: 10.1016/j.na.2009.01.137.  Google Scholar

[10]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[11]

M. A. Hejazi and S. Nobakhtian, Optimality conditions for multiobjective fractional programming, via convexificators, Journal of Industrial & Management Optimization, 16 (2020), 623-631.  doi: 10.3934/jimo.2018170.  Google Scholar

[12]

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, Journal of Optimization Theory and Applications, 101 (1999), 599-621.  doi: 10.1023/A:1021790120780.  Google Scholar

[13]

S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps, Journal of Optimization Theory and Applications, 18 (1976), 445-454.  doi: 10.1007/BF00932654.  Google Scholar

[14]

B. Kohli, Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem, Journal of Industrial & Management Optimization. doi: 10.3934/jimo.2020114.  Google Scholar

[15]

S. Komlósi, Generalized monotonicity and generalized convexity, Journal of Optimization Theory and Applications, 84 (1995), 361-376.  doi: 10.1007/BF02192119.  Google Scholar

[16]

V. Laha and S. K. Mishra, On vector optimization problems and vector variational inequalities using convexificators, Optimization, 66 (2017), 1837-1850.  doi: 10.1080/02331934.2016.1250268.  Google Scholar

[17]

C. S. Lalitha and M. Mehta, Vector variational inequalities with cone-pseudomonotone bifunctions, Optimization, 54 (2005), 327-338.  doi: 10.1080/02331930500100254.  Google Scholar

[18]

F. Lara, Optimality conditions for nonconvex nonsmooth optimization via global derivatives, Journal of Optimization Theory and Applications, 185 (2020), 134-150.  doi: 10.1007/s10957-019-01613-9.  Google Scholar

[19]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[20]

B. B. Upadhyay, P. Mishra, R. N. Mohapatra and S. K. Mishra, On the applications of nonsmooth vector optimization problems to solve generalized vector variational inequalities using convexificators, in World Congress on Global Optimization, Springer, 2019,660–671. doi: 10.1007/978-3-030-21803-4_66.  Google Scholar

[21]

H. WeiC. Chen and B. Wu, Vector network equilibrium problems with uncertain demands and capacity constraints of arcs, Optimization Letters, 15 (2021), 1113-1131.  doi: 10.1007/s11590-020-01610-2.  Google Scholar

[22]

X. Q. Yang and C. J. Goh, On vector variational inequalities: Application to vector equilibria, Journal of Optimization Theory and Applications, 95 (1997), 431-443.  doi: 10.1023/A:1022647607947.  Google Scholar

[1]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[2]

Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701

[3]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[4]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[5]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[6]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[7]

Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations & Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058

[8]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

[9]

Thanyarat JItpeera, Tamaki Tanaka, Poom Kumam. Triple-hierarchical problems with variational inequality. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021038

[10]

X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671

[11]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[12]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[13]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[14]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[15]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[16]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

[17]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[18]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[19]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[20]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (196)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]