[1]
|
M. Al-Baali and H. Khalfan, A combined class of self-scaling and modified quasi-Newton methods, Comput. Optim. Appl., 52 (2012), 393-408.
doi: 10.1007/s10589-011-9415-1.
|
[2]
|
C. G. Broyden, J. E. Dennis and J. J. Mor$\acute{e}$, On the local and superlinear convergence of quasi-Newton methods, J. Inst. Math. Appl., 12 (1973), 223-245.
doi: 10.1093/imamat/12.3.223.
|
[3]
|
R. Byrd, J. Nocedal and Y. Yuan, Global convergence of a class of quasi-Newton methods on convex problems, SIAM J. Numer. Anal., 24 (1987), 1171-1189.
doi: 10.1137/0724077.
|
[4]
|
R. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042.
|
[5]
|
E. D. Dolan and J. J. Mor$\acute{e}$, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[6]
|
L. C. W. Dixon, Variable metric algorithms: Nessary and sufficient conditions for identical behavior on nonquadratic functions, J. Optimiz. Theory. App., 10 (1972), 34-40.
doi: 10.1007/BF00934961.
|
[7]
|
J. E. Dennis Jr and J. J. Mor$\acute{e}$, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46-89.
doi: 10.1137/1019005.
|
[8]
|
J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983.
|
[9]
|
Y. Dai, Convergence properties of the BFGS algoritm, SIAM J. Optim., 13 (2003), 693-701.
doi: 10.1137/S1052623401383455.
|
[10]
|
R. Fletcher, Practical Methods of Optimization, 2$^nd$ edition, A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1987.
|
[11]
|
A. Griewank, The global convergence of partitioned BFGS on problems with convex decompositions and Lipschitzian gradients, Math. Program., 50 (1991), 141-175.
doi: 10.1007/BF01594933.
|
[12]
|
A. Griewank, The "global" convergence of Broyden-like methods with suitable line search, J. Austral. Math. Soc. Ser., 28 (1986), 75-92.
doi: 10.1017/S0334270000005208.
|
[13]
|
Z. W. Geem, Parameter estimation for the nonlinear Muskingum model using the BFGS technique, J. Irrig. Drain. Eng., 132 (2006), 474-478.
doi: 10.1061/(ASCE)0733-9437(2006)132:5(474).
|
[14]
|
D. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35.
doi: 10.1016/S0377-0427(00)00540-9.
|
[15]
|
D. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optim., 11 (2001), 1054-1064.
doi: 10.1137/S1052623499354242.
|
[16]
|
A. Ouyang, L. Liu, Z. Sheng and F. Wu, A class of parameter estimation methods for nonlinear Muskingum model using hybrid invasive weed optimization algorithm, Math. Probl. Eng., 2015 (2015), 1-15.
doi: 10.1155/2015/573894.
|
[17]
|
A. Ouyang, Z. Tang, K. Li, A. Sallam and E. Sha, Estimating parameters of Muskingum model using an adaptive hybrid PSO algorithm, Int. J. Pattern. Recogn., 28 (2014), 1-29.
doi: 10.1142/S0218001414590034.
|
[18]
|
M. J. D. Powell, On the convergence of the variable metric algorithm, J. Inst. Math. Appl., 7 (1971), 21-36.
doi: 10.1093/imamat/7.1.21.
|
[19]
|
M. J. D. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, Nonlinear Programming, SIAM-AMS Proc., Amer. Math. Soc., Providence, R. I., 9 (1976), 53–72.
|
[20]
|
J. D. Pearson, Variable metric methods of minimization, Comput. J., 12 (1969/70), 171-178.
doi: 10.1093/comjnl/12.2.171.
|
[21]
|
J. Schropp, A note on minimization problems and multistep methods, Numer. Math., 78 (1997), 87-101.
doi: 10.1007/s002110050305.
|
[22]
|
J. Schropp, One-step and multistep procedures for constrained minimization problems, IMA J. Numer. Anal., 20 (2000), 135-152.
doi: 10.1093/imanum/20.1.135.
|
[23]
|
P. L. Toint, Global convergence of the partitioned BFGS algorithm for convex partially separable optimization, Math. Program., 36 (1986), 290-306.
doi: 10.1007/BF02592063.
|
[24]
|
D. J. Van Wyk, Differential optimization techniques, Appl. Math. Model., 8 (1984), 419-424.
doi: 10.1016/0307-904X(84)90048-9.
|
[25]
|
M. N. Vrahatis, G. S. Androulakis and J. N. Lambrinos, et al., A class of gradient unconstrained minimization algorithms with adaptive stepsize, J. Comput. Appl. Math., 114 (2000), 367-386.
doi: 10.1016/S0377-0427(99)00276-9.
|
[26]
|
Z. Wei, G. Li and L. Qi, New quasi-Newton methods for unconstrained optimization problems, Appl. Math. Comput., 175 (2006), 1156-1188.
doi: 10.1016/j.amc.2005.08.027.
|
[27]
|
Z. Wei, G. Yu, G. Yuan and Z. Lian, The superlinear convergence of a modified BFGS-type method for unconstrained optimization, Comput. Optim. Appl., 29 (2004), 315-332.
doi: 10.1023/B:COAP.0000044184.25410.39.
|
[28]
|
H. Yabe, H. Ogasawara and M. Yoshino, Local and superlinear convergence of quasi-Newton methods based on modified secant conditions, J. Comput. Appl. Math., 205 (2007), 617-632.
doi: 10.1016/j.cam.2006.05.018.
|
[29]
|
G. Yuan and X. Lu, A new line search method with trust region for unconstrained optimization, Comm. Appl. Nonlinear Anal., 15 (2008), 35-49.
|
[30]
|
G. Yuan, Z. Sheng, B. Wang, W. Hu and C. Li, The global convergence of a modified BFGS method for nonconvex functions, J. Comput. Appl. Math., 327 (2018), 274-294.
doi: 10.1016/j.cam.2017.05.030.
|
[31]
|
G. Yuan, Z. Wang and P. Li, A modifed Broyden family algorithm with global convergence under a weak Wolfe-Powell line search for unconstrained nonconvex problems, Calcolo., 57 (2020), 21pp.
doi: 10.1007/s10092-020-00383-5.
|
[32]
|
G. Yuan, Z. Wei and X. Lu, Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search, Appl. Math. Model., 47 (2017), 811-825.
doi: 10.1016/j.apm.2017.02.008.
|
[33]
|
G. Yuan and Z. Wei, Convergence analysis of a modified BFGS method on convex minimizations, Comput. Optim. Appl., 47 (2010), 237-255.
doi: 10.1007/s10589-008-9219-0.
|
[34]
|
G. Yuan and Z. Wei, New line search methods for unconstrained optimization, J. Korean Statist. Soc., 38 (2009), 29-39.
doi: 10.1016/j.jkss.2008.05.004.
|
[35]
|
G. Yuan, Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems, Optim. Lett., 3 (2009), 11-21.
doi: 10.1007/s11590-008-0086-5.
|
[36]
|
Y. Yuan and W. Sun, Theory and Methods of Optimization, Science Press of China, Beijing, 1999.
|