[1]
|
J. Abate and W. Whitt, The fourier-series method for inverting transforms of probability distributions, Queueing Systems, 10 (1992), 5-87.
doi: 10.1007/BF01158520.
|
[2]
|
J. Abate and W. Whitt, Numerical inversion of probability generating functions, Operations Research Letters, 12 (1992), 245-251.
doi: 10.1016/0167-6377(92)90050-D.
|
[3]
|
J. Abate and W. Whitt, Solving probability transform functional equations for numerical inversion, Operations Research Letters, 12 (1992), 275-281.
doi: 10.1016/0167-6377(92)90085-H.
|
[4]
|
S. Asmussen and H. Albrecher, Ruin Probabilities, vol. 14, Advanced Series on Statistical Science & Applied Probability, Hackensack, NJ, 2010.
doi: 10.1142/9789814282536.
|
[5]
|
E. Borel, Sur l'emploi du théoreme de Bernoulli pour faciliter le calcul d'une infinité de coefficients. Application au probleme de l'attentea un guichet, CR Acad. Sci. Paris, 214 (1942), 452-456.
|
[6]
|
L. Breuer and D. Baum, An Introduction to Queueing Theory: And Matrix-Analytic Methods, Springer Science & Business Media, 2005.
doi: 10.1007/1-4020-3631-0.
|
[7]
|
M. L. Chaudhry and V. Goswami, Analytically explicit results for the distribution of the number of customers served during a busy period for special cases of the $M/G/1$ queue, Journal of Probability and Statistics, 2019 (2019), Art. ID 7398658, 15 pp.
doi: 10.1155/2019/7398658.
|
[8]
|
|
[9]
|
P. C. Consul and F. Famoye, Lagrangian Probability Distributions, Springer, 2006.
|
[10]
|
P. C. Consul and L. R. Shenton, Use of lagrange expansion for generating discrete generalized probability distributions, SIAM Journal on Applied Mathematics, 23 (1972), 239-248.
doi: 10.1137/0123026.
|
[11]
|
D. R. Cox, Some statistical methods connected with series of events, Journal of the Royal Statistical Society: Series B (Methodological), 17 (1955), 129-157.
doi: 10.1111/j.2517-6161.1955.tb00188.x.
|
[12]
|
A. K. Erlang, Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges, Post Office Electrical Engineer's Journal, 10 (1917), 189-197.
|
[13]
|
G. Falin, Functioning under nonsteady conditions of a single-channel system with group arrival of requests and repeated calls, Ukrainian Mathematical Journal, 33 (1981), 429-432.
doi: 10.1007/BF01085753.
|
[14]
|
W. Fischer and K. Meier-Hellstern, The Markov-modulated Poisson process (MMPP) cookbook, Performance Evaluation, 18 (1993), 149-171.
doi: 10.1016/0166-5316(93)90035-S.
|
[15]
|
F. A. Haight, A distribution analogous to the borel-tanner, Biometrika, 48 (1961), 167-173.
doi: 10.1093/biomet/48.1-2.167.
|
[16]
|
D. P. Heyman, An approximation for the busy period of the ${M/G/1}$ queue using a diffusion model, Journal of Applied Probability, 11 (1974), 159-169.
doi: 10.2307/3212592.
|
[17]
|
D. G. Kendall, Some problems in the theory of dams, Journal of the Royal Statistical Society. Series B (Methodological), 19 (1957), 207-233.
doi: 10.1111/j.2517-6161.1957.tb00257.x.
|
[18]
|
J. Kim, Busy period distribution of a batch arrival retrial queue, Communications of the Korean Mathematical Society, 32 (2017), 425-433.
doi: 10.4134/CKMS.c160106.
|
[19]
|
L. Kleinrock, Queueing Systems, vol. 1, Wiley, New York, 1975.
|
[20]
|
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, 1999.
doi: 10.1137/1.9780898719734.
|
[21]
|
J. Medhi, Stochastic Models in Queueing Theory, Academic Press, Amsterdam, 2003.
|
[22]
|
M. F. Neuts, Computational uses of the method of phases in the theory of queues, Computers & Mathematics with Applications, 1 (1975), 151-166.
doi: 10.1016/0898-1221(75)90015-2.
|
[23]
|
M. F. Neuts, Matrix-geometric solutions in stochastic models: An algorithmic approach, Bull. Amer. Math. Soc, 8 (1983), 97-99.
doi: 10.1090/S0273-0979-1983-15095-4.
|
[24]
|
N. U. Prabhu, Some results for the queue with Poisson arrivals, Journal of the Royal Statistical Society: Series B (Methodological), 22 (1960), 104-107.
doi: 10.1111/j.2517-6161.1960.tb00357.x.
|
[25]
|
N. U. Prabhu, Queues and Inventories, John Wiley & Sons, 1965.
|
[26]
|
J. F. Shortle, J. M. Thompson, D. Gross and C. M. Harris, Fundamentals of Queueing Theory, Fifth Edition, John Wiley & Sons, 2018.
doi: 10.1002/9781119453765.
|
[27]
|
W. J. Stewart, Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling, Princeton University Press, 2009.
|
[28]
|
L. Takács, Combinatorial Methods in the Theory of Stochastic Processes, Wiley, New York, 1967.
|
[29]
|
J. C. Tanner, A problem of interference between two queues, Biometrika, 40 (1953), 58-69.
doi: 10.1093/biomet/40.1-2.58.
|