[1]
|
B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function, Math. Programm., 88 (2000), 211-216.
doi: 10.1007/PL00011375.
|
[2]
|
J.-S. Chen, H.-T. Gao and S. Pan, An $R$-linearly convergent derivative-free algorithm for the NCPs based on the generalized Fischer-Burmeister merit function, J. Comput. Appl. Math., 232 (2009), 455-471.
doi: 10.1016/j.cam.2009.06.022.
|
[3]
|
J.-S. Chen, Z.-H. Huang and C.-Y. She, A new class of penalized NCP-functions and its properties, Comput. Optim. Appl., 50 (2001), 49-73.
doi: 10.1007/s10589-009-9315-9.
|
[4]
|
J.-S. Chen and S. Pan, A family of NCP functions and a descent method for the nonlinear complementarity problem, Comput. Optim. Appl., 40 (2008), 389-404.
doi: 10.1007/s10589-007-9086-0.
|
[5]
|
X. Chi, M. Gowda and J. Tao, The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra, J. Glob. Optim., 73 (2019), 153-169.
doi: 10.1007/s10898-018-0689-z.
|
[6]
|
X. Chi, Y. Wang, Z. Zhu and Z. Wan, Jacobian consistency of a one-parametric class of smoothing Fischer-Burmeister functions for SOCCP, Comput. Appl. Math., 37 (2018), 439-455.
doi: 10.1007/s40314-016-0352-6.
|
[7]
|
X. Chi, Z. Wan, Z. Zhu and L. Yuan, A nonmonotone smoothing Newton method for circular cone programming, Optim., 65 (2016), 2227-2250.
doi: 10.1080/02331934.2016.1217861.
|
[8]
|
T. De Luca, F. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Programm., 75 (1996), 407-439.
doi: 10.1007/BF02592192.
|
[9]
|
S. P. Dirkse and M. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5 (1995), 319-345.
doi: 10.1080/10556789508805619.
|
[10]
|
M. C. Ferris and J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669-713.
doi: 10.1137/S0036144595285963.
|
[11]
|
C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Comput. Optim. Appl., 5 (1996), 155-173.
doi: 10.1007/BF00249054.
|
[12]
|
L. Grippo, F. Lampariello and S. Ludidi, A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal., 23 (1986), 707-716.
doi: 10.1137/0723046.
|
[13]
|
C. Gu, D. Zhu and Y. Pei, A new inexact SQP algorithm for nonlinear systems of mixed equalities and inequalities, Numer. Algor., 78 (2018), 1233-1253.
doi: 10.1007/s11075-017-0421-y.
|
[14]
|
W.-Z. Gu and L.-Y. Lu, The linear convergence of a derivative-free descent method for nonlinear complementarity problems, J. Indust. Manag. Optim., 13 (2017), 531-548.
doi: 10.3934/jimo.2016030.
|
[15]
|
Z. Hao, Z. Wan and X. Chi, A power penalty method for second-order cone nonlinear complementarity problems, J. Comput. Appl. Math., 290 (2015), 136-149.
doi: 10.1016/j.cam.2015.05.007.
|
[16]
|
P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programm., 48 (1990), 161-220.
doi: 10.1007/BF01582255.
|
[17]
|
S.-L. Hu, Z.-H. Huang and J.-S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, J. Comput. Appl. Math., 230 (2009), 69-82.
doi: 10.1016/j.cam.2008.10.056.
|
[18]
|
C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem, Nonlinear Anal. Theory Methods Appl., 75 (2012), 588-597.
doi: 10.1016/j.na.2011.08.061.
|
[19]
|
C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem, Oper. Res. Lett., 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009.
|
[20]
|
C.-H. Huang, K.-J. Weng, J.-S. Chen, H.-W. Chu and M.-Y. Li, On four discrete-type families of NCP-functions, J. Nonlinear Convex Anal., 20 (2019), 283-306.
|
[21]
|
C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems, Comput. Optim. Appl., 11 (1998), 227-251.
doi: 10.1023/A:1026424918464.
|
[22]
|
P.-F. Ma, J.-S. Chen, C.-H. Huang and C.-H. Ko, Discovery of new complementarity functions for NCP and SOCCP, Comput. Appl. Math., 37 (2018), 5727-5749.
doi: 10.1007/s40314-018-0660-0.
|
[23]
|
J.-S. Pang, Complementarity problems, Handbook of Global Optimization, 271–338, Nonconvex Optim. Appl., 2, Kluwer Acad. Publ., Dordrecht, (1995).
doi: 10.1007/978-1-4615-2025-2_6.
|
[24]
|
J. M. Peng, Derivative-free methods for monotone variational inequality and complementarity problems, J. Optim. Theory Appl., 99 (1998), 235-252.
doi: 10.1023/A:1021712513685.
|
[25]
|
K. Su and D. Yang, A smooth Newton method with 3-1 piecewise NCP function for generalized nonlinear complementarity problem, Int. J. Comput. Math., 95 (2018), 1703-1713.
doi: 10.1080/00207160.2017.1329531.
|
[26]
|
S. Wang and C.-S. Huang, A power penalty method for solving a nonlinear parabolic complementarity problem, Nonlinear Anal. Theory Methods Appl., 69 (2008), 1125-1137.
doi: 10.1016/j.na.2007.06.014.
|
[27]
|
S. Wang and X. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optim., 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236.
|
[28]
|
S. Wang and X. Yang, A power penalty method for linear complementarity problems, Oper. Res. Lett., 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006.
|
[29]
|
S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3.
|
[30]
|
S. Wang and K. Zhang, An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering, Optim. Lett., 12 (2018), 1161-1178.
doi: 10.1007/s11590-016-1050-4.
|
[31]
|
K. Yamada, N. Yamashita and M. Fukushima, A new derivative-free descent method for the nonlinear complementarity problems, in: G.D. Pillo, F. Giannessi (Eds.), Nonlinear Optimization and Related Topics, Kluwer Academic Publishers, Netherlands, (2000), 463–487.
doi: 10.1007/978-1-4757-3226-9_25.
|
[32]
|
K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option, J. Indust. Manag. Optim., 7 (2011), 435-447.
doi: 10.3934/jimo.2011.7.435.
|
[33]
|
J. Zhu, H. Liu, C. Liu and W. Cong, A nonmonotone derivative-free algorithmfor nonlinear complementarity problems based on the new generalized penalized Fischer-Burmeister merit function, Numer. Algor., 58 (2011), 573-591.
doi: 10.1007/s11075-011-9471-8.
|