• Previous Article
    Two-level optimization approach with accelerated proximal gradient for objective measures in sparse speech reconstruction
  • JIMO Home
  • This Issue
  • Next Article
    Investigating a green supply chain with product recycling under retailer's fairness behavior
doi: 10.3934/jimo.2021173
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Projection method with inertial step for nonlinear equations: Application to signal recovery

1. 

KMUTTFixed Point Research Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

2. 

Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand

3. 

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

4. 

School of Mathematics and Statistics, Zaozhuang University, Shandong 277160, China

5. 

School of Management, Qufu Normal University, Shandong 276826, China

6. 

NCAO Research Center, Fixed Point Theory and Applications Research Group, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

7. 

Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano. Kano, Nigeria, Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, Medunsa-0204, South Africa

* Corresponding author: Poom Kumam

Received  May 2021 Revised  August 2021 Early access October 2021

Fund Project: The first author is supported by the Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut's University of Technology Thonburi (Grant no. 16/2561)

In this paper, using the concept of inertial extrapolation, we introduce a globally convergent inertial extrapolation method for solving nonlinear equations with convex constraints for which the underlying mapping is monotone and Lipschitz continuous. The method can be viewed as a combination of the efficient three-term derivative-free method of Gao and He [Calcolo. 55(4), 1-17, 2018] with the inertial extrapolation step. Moreover, the algorithm is designed such that at every iteration, the method is free from derivative evaluations. Under standard assumptions, we establish the global convergence results for the proposed method. Numerical implementations illustrate the performance and advantage of this new method. Moreover, we also extend this method to solve the LASSO problems to decode a sparse signal in compressive sensing. Performance comparisons illustrate the effectiveness and competitiveness of our algorithm.

Citation: Abdulkarim Hassan Ibrahim, Poom Kumam, Min Sun, Parin Chaipunya, Auwal Bala Abubakar. Projection method with inertial step for nonlinear equations: Application to signal recovery. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021173
References:
[1]

A. B. AbubakarA. H. IbrahimA. B. Muhammad and C. Tammer, A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Appl. Anal. Optim., 4 (2020), 1-24.   Google Scholar

[2]

A. B. Abubakar and P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations, Numerical Algorithms, 81 (2019), 197-210.  doi: 10.1007/s11075-018-0541-z.  Google Scholar

[3]

A. B. Abubakar and P. Kumam, An improved three-term derivative-free method for solving nonlinear equations, Comput. Appl. Math., 37 (2018), 6760-6773.  doi: 10.1007/s40314-018-0712-5.  Google Scholar

[4]

A. B. Abubakar, P. Kumam and A. H. Ibrahim, Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations with Convex Constraints, IEEE Access. 2021. Google Scholar

[5]

J. AbubakarP. KumamA. H. Ibrahim and et al., Inertial iterative schemes with variable step sizes for variational inequality problem involving pseudomonotone operator, Mathematics, 8 (2020), 609.   Google Scholar

[6]

A. B. Abubakar, P. Kumam, A. H. Ibrahim, P. Chaipunya and S. A. Rano, New Hybrid Three-Term Spectral-Conjugate Gradient Method for Finding Solutions of Nonlinear Monotone Operator Equations with Applications, Mathematics and Computers in Simulation, 2021. Google Scholar

[7]

A. B. Abubakar, P. Kumam, A. H. Ibrahim and J. Rilwan, Derivative-free HS-DY-type method for solving nonlinear equations and image restoration, Heliyon, 6 (2020), e05400. Google Scholar

[8]

A. B. Abubakar, P. Kumam and H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39 (2020), Paper No. 129, 35 pp. doi: 10.1007/s40314-020-01151-5.  Google Scholar

[9]

A. B. AbubakarP. KumamH. Mohammad and A. H. Ibrahim, PRP-like algorithm for monotone operator equations, Jpn. J. Ind. Appl. Math., 38 (2021), 805-822.  doi: 10.1007/s13160-021-00462-2.  Google Scholar

[10]

A. B. AbubakarK. MuangchooA. H. IbrahimJ. Abubakar and S. A. Rano, FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations, Arab. J. Math. (Springer), 10 (2021), 261-270.  doi: 10.1007/s40065-021-00313-5.  Google Scholar

[11]

A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, S. E. Fadugba, K. O. Aremu and L. O. Jolaoso, A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations, J. Math., 2021 (2021), Art. ID 5549878, 9 pp. doi: 10.1155/2021/5549878.  Google Scholar

[12]

A. B. AbubakarK. MuangchooA. H. IbrahimA. B. MuhammadL. O. Jolaoso and K. O. Aremu, A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration, IEEE Access, 9 (2021), 18262-18277.   Google Scholar

[13]

A. B. AbubakarJ. RilwanS. E. YimerA. H. Ibrahim and and I. Ahmed, Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints, Thai J. Math., 18 (2020), 501-517.   Google Scholar

[14]

J. AbubakarP. KumamA. H. Ibrahim and A. Padcharoen, Relaxed inertial Tseng's type method for solving the inclusion problem with application to image restoration, Mathematics, 8 (2020), 818.   Google Scholar

[15]

J. AbubakarK. SombutH. ur RehmanA. H. Ibrahim and et al., An accelerated subgradient extragradient algorithm for strongly pseudomonotone variational inequality problems, Thai J. Math., 18 (2020), 166-187.   Google Scholar

[16]

W. Aj and B. Wollenberg, Power Generation, Operation and Control, New York: John Wiley & Sons. 1996,592. Google Scholar

[17]

F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3-11.  doi: 10.1023/A:1011253113155.  Google Scholar

[18]

H. AttouchJ. Peypouquet and P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), 232-256.  doi: 10.1137/130910294.  Google Scholar

[19]

A. AuslenderM. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., 12 (1999), 31-40.  doi: 10.1023/A:1008607511915.  Google Scholar

[20]

A. B. AbubakarP. KumamM. MalikP. Chaipunya and A. H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection, AIMS Math., 6 (2021), 6506-6527.  doi: 10.3934/math.2021383.  Google Scholar

[21]

A. B. Abubakar, P. Kumam, M. Malik and A. H. Ibrahim, A Hybrid Conjugate Gradient Based Approach for Solving Unconstrained Optimization and Motion Control Problems., Mathematics and Computers in Simulation, 2021. Google Scholar

[22]

R. I. Boţ and E. R. Csetnek, An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algorithms, 71 (2016), 519-540.  doi: 10.1007/s11075-015-0007-5.  Google Scholar

[23]

R. I. Boţ and E. R. Csetnek, A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 36 (2015), 951-963.  doi: 10.1080/01630563.2015.1042113.  Google Scholar

[24]

R. I. BoţE. R. Csetnek and C. Hendrich, Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput., 256 (2015), 472-487.  doi: 10.1016/j.amc.2015.01.017.  Google Scholar

[25]

C. ChenR. H. ChanS. Ma and J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8 (2015), 2239-2267.  doi: 10.1137/15100463X.  Google Scholar

[26]

P. Chuasuk, F. Ogbuisi, Y. Shehu and P. Cholamjiak, New inertial method for generalized split variational inclusion problems, Journal of Industrial & Management Optimization, (2020). Google Scholar

[27]

J. E. Dennis Jr. and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28 (1974), 549-560.  doi: 10.1090/S0025-5718-1974-0343581-1.  Google Scholar

[28]

J. E. Dennis Jr. and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46-89.  doi: 10.1137/1019005.  Google Scholar

[29]

J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM; 1996. doi: 10.1137/1.9781611971200.  Google Scholar

[30]

S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.   Google Scholar

[31]

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.  doi: 10.1007/s101070100263.  Google Scholar

[32]

Q. L. DongY. J. ChoL. L. Zhong and Th. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., 70 (2018), 687-704.  doi: 10.1007/s10898-017-0506-0.  Google Scholar

[33]

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Science & Business Media; 2010. doi: 10.1007/978-1-4419-7011-4.  Google Scholar

[34]

M. A. FigueiredoR. D. Nowak and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 586-597.   Google Scholar

[35]

P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55 (2018), Paper No. 53, 17 pp. doi: 10.1007/s10092-018-0291-2.  Google Scholar

[36]

A. H. Ibrahim, J. Deepho, A. B. Abubakar and A. Adamu, A three-term Polak-Ribiére-Polyak derivative-free method and its application to image restoration, Scientific African, 13 (2021), e00880. Available from: https://www.sciencedirect.com/science/article/pii/S2468227621001848. Google Scholar

[37]

A. H. Ibrahim, J. Deepho, A. B. Abubakar and K. O. Aremu, A Modified Liu-Storey-Conjugate Descent Hybrid Projection Method for Convex Constrained Nonlinear Equations and Image Restoration, Numerical Algebra, Control & Optimization, 2021. Google Scholar

[38]

A. H. IbrahimG. A. IsaH. UsmanJ. Abubakar and A. B. Abubakar, Derivative-free RMIL conjugate gradient method for convex constrained equations, Thai J. Math., 18 (2019), 212-232.   Google Scholar

[39]

A. H. Ibrahim and P. Kumam, Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints, Ain Shams Engineering Journal, (2021). Google Scholar

[40]

A. H. IbrahimP. KumamA. B. AbubakarJ. Abubakar and A. B. Muhammad, Least-square-based three-term conjugate gradient projection method for $\ell_1$-norm problems with application to compressed sensing, Mathematics, 8 (2020), 602.   Google Scholar

[41]

A. H. IbrahimP. KumamA. B. AbubakarU. Batsari YusufS. E. Yimer and K. O. Aremu, An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration, AIMS Math., 6 (2021), 235-260.  doi: 10.3934/math.2021016.  Google Scholar

[42]

A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat and J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon, 6 (2020), e03466. Google Scholar

[43]

A. H. IbrahimP. KumamA. B. AbubakarU. B. Yusuf and J. Rilwan, Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery, J. Nonlinear Convex Anal., 21 (2020), 1959-1972.   Google Scholar

[44]

A. H. IbrahimP. KumamB. A. HassanA. B. Abubakar and J. Abubakar, A derivative-free three-term hestenes-stiefel type method for constrained nonlinear equations and image restoration, International Journal of Computer Mathematics, 0 (2021), 1-22.  doi: 10.1080/00207160.2021.1946043.  Google Scholar

[45]

A. H. IbrahimP. Kumam and W. Kumam, A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access, 8 (2020), 162714-162729.   Google Scholar

[46]

A. H. IbrahimK. MuangchooA. B. AbubakarA. D. Adedokun and H. Mohammed, Spectral conjugate gradient like method for signal reconstruction, Thai J. Math., 18 (2020), 2013-2022.   Google Scholar

[47]

A. H. IbrahimK. MuangchoobN. S. Mohamedc and A. B. Abubakar, Derivative-free SMR conjugate gradient method for con-straint nonlinear equations, Journal of Mathematics and Computer Science, 24 (2022), 147-164.   Google Scholar

[48]

W. La Cruz, J. M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments, Citeseer, 2004; Technical Report RT-04-08 (https://www.ime.unicamp.br/ martinez/lmrreport.pdf). Google Scholar

[49]

Q. Li and D.-H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635.  doi: 10.1093/imanum/drq015.  Google Scholar

[50]

D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311-325.  doi: 10.1007/s10851-014-0523-2.  Google Scholar

[51]

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361.  doi: 10.1016/0096-3003(87)90076-2.  Google Scholar

[52]

H. Mohammad, Barzilai-Borwein-like method for solving large-scale non-linear systems of equations, J. Nigerian Math. Soc., 36 (2017), 71-83.   Google Scholar

[53]

H. Mohammad and A. B. Abubakar, A descent derivative-free algorithm for nonlinear monotone equations with convex constraints, RAIRO Oper. Res., 54 (2020), 489-505.  doi: 10.1051/ro/2020008.  Google Scholar

[54]

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ž. Vyčisl. Mat i Mat. Fiz., 4 (1964), 791–803.  Google Scholar

[55]

L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Programming, 58 (1993), 353-367.  doi: 10.1007/BF01581275.  Google Scholar

[56]

M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776.  doi: 10.1137/S0363012997317475.  Google Scholar

[57]

M. Sun, J. Liu and Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020), Art. ID 9175496, 11 pp. doi: 10.1155/2020/9175496.  Google Scholar

[58]

D. V. Thong and D. V. Hieu, An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 19 (2017), 3029-3051.  doi: 10.1007/s11784-017-0464-7.  Google Scholar

[59]

D. V. Thong and D. V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597-610.  doi: 10.1007/s11075-017-0452-4.  Google Scholar

[60]

Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319.  doi: 10.1016/j.jmaa.2013.04.017.  Google Scholar

[61]

N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, In: Topics in Numerical Analysis, 15, Springer, Vienna, (2001), 239–249. doi: 10.1007/978-3-7091-6217-0_18.  Google Scholar

[62]

Z. YuJ. LinJ. SunY. XiaoL. Liu and Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.  doi: 10.1016/j.apnum.2009.04.004.  Google Scholar

show all references

References:
[1]

A. B. AbubakarA. H. IbrahimA. B. Muhammad and C. Tammer, A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Appl. Anal. Optim., 4 (2020), 1-24.   Google Scholar

[2]

A. B. Abubakar and P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations, Numerical Algorithms, 81 (2019), 197-210.  doi: 10.1007/s11075-018-0541-z.  Google Scholar

[3]

A. B. Abubakar and P. Kumam, An improved three-term derivative-free method for solving nonlinear equations, Comput. Appl. Math., 37 (2018), 6760-6773.  doi: 10.1007/s40314-018-0712-5.  Google Scholar

[4]

A. B. Abubakar, P. Kumam and A. H. Ibrahim, Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations with Convex Constraints, IEEE Access. 2021. Google Scholar

[5]

J. AbubakarP. KumamA. H. Ibrahim and et al., Inertial iterative schemes with variable step sizes for variational inequality problem involving pseudomonotone operator, Mathematics, 8 (2020), 609.   Google Scholar

[6]

A. B. Abubakar, P. Kumam, A. H. Ibrahim, P. Chaipunya and S. A. Rano, New Hybrid Three-Term Spectral-Conjugate Gradient Method for Finding Solutions of Nonlinear Monotone Operator Equations with Applications, Mathematics and Computers in Simulation, 2021. Google Scholar

[7]

A. B. Abubakar, P. Kumam, A. H. Ibrahim and J. Rilwan, Derivative-free HS-DY-type method for solving nonlinear equations and image restoration, Heliyon, 6 (2020), e05400. Google Scholar

[8]

A. B. Abubakar, P. Kumam and H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39 (2020), Paper No. 129, 35 pp. doi: 10.1007/s40314-020-01151-5.  Google Scholar

[9]

A. B. AbubakarP. KumamH. Mohammad and A. H. Ibrahim, PRP-like algorithm for monotone operator equations, Jpn. J. Ind. Appl. Math., 38 (2021), 805-822.  doi: 10.1007/s13160-021-00462-2.  Google Scholar

[10]

A. B. AbubakarK. MuangchooA. H. IbrahimJ. Abubakar and S. A. Rano, FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations, Arab. J. Math. (Springer), 10 (2021), 261-270.  doi: 10.1007/s40065-021-00313-5.  Google Scholar

[11]

A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, S. E. Fadugba, K. O. Aremu and L. O. Jolaoso, A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations, J. Math., 2021 (2021), Art. ID 5549878, 9 pp. doi: 10.1155/2021/5549878.  Google Scholar

[12]

A. B. AbubakarK. MuangchooA. H. IbrahimA. B. MuhammadL. O. Jolaoso and K. O. Aremu, A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration, IEEE Access, 9 (2021), 18262-18277.   Google Scholar

[13]

A. B. AbubakarJ. RilwanS. E. YimerA. H. Ibrahim and and I. Ahmed, Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints, Thai J. Math., 18 (2020), 501-517.   Google Scholar

[14]

J. AbubakarP. KumamA. H. Ibrahim and A. Padcharoen, Relaxed inertial Tseng's type method for solving the inclusion problem with application to image restoration, Mathematics, 8 (2020), 818.   Google Scholar

[15]

J. AbubakarK. SombutH. ur RehmanA. H. Ibrahim and et al., An accelerated subgradient extragradient algorithm for strongly pseudomonotone variational inequality problems, Thai J. Math., 18 (2020), 166-187.   Google Scholar

[16]

W. Aj and B. Wollenberg, Power Generation, Operation and Control, New York: John Wiley & Sons. 1996,592. Google Scholar

[17]

F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3-11.  doi: 10.1023/A:1011253113155.  Google Scholar

[18]

H. AttouchJ. Peypouquet and P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), 232-256.  doi: 10.1137/130910294.  Google Scholar

[19]

A. AuslenderM. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., 12 (1999), 31-40.  doi: 10.1023/A:1008607511915.  Google Scholar

[20]

A. B. AbubakarP. KumamM. MalikP. Chaipunya and A. H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection, AIMS Math., 6 (2021), 6506-6527.  doi: 10.3934/math.2021383.  Google Scholar

[21]

A. B. Abubakar, P. Kumam, M. Malik and A. H. Ibrahim, A Hybrid Conjugate Gradient Based Approach for Solving Unconstrained Optimization and Motion Control Problems., Mathematics and Computers in Simulation, 2021. Google Scholar

[22]

R. I. Boţ and E. R. Csetnek, An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algorithms, 71 (2016), 519-540.  doi: 10.1007/s11075-015-0007-5.  Google Scholar

[23]

R. I. Boţ and E. R. Csetnek, A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 36 (2015), 951-963.  doi: 10.1080/01630563.2015.1042113.  Google Scholar

[24]

R. I. BoţE. R. Csetnek and C. Hendrich, Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput., 256 (2015), 472-487.  doi: 10.1016/j.amc.2015.01.017.  Google Scholar

[25]

C. ChenR. H. ChanS. Ma and J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8 (2015), 2239-2267.  doi: 10.1137/15100463X.  Google Scholar

[26]

P. Chuasuk, F. Ogbuisi, Y. Shehu and P. Cholamjiak, New inertial method for generalized split variational inclusion problems, Journal of Industrial & Management Optimization, (2020). Google Scholar

[27]

J. E. Dennis Jr. and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28 (1974), 549-560.  doi: 10.1090/S0025-5718-1974-0343581-1.  Google Scholar

[28]

J. E. Dennis Jr. and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46-89.  doi: 10.1137/1019005.  Google Scholar

[29]

J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM; 1996. doi: 10.1137/1.9781611971200.  Google Scholar

[30]

S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.   Google Scholar

[31]

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.  doi: 10.1007/s101070100263.  Google Scholar

[32]

Q. L. DongY. J. ChoL. L. Zhong and Th. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., 70 (2018), 687-704.  doi: 10.1007/s10898-017-0506-0.  Google Scholar

[33]

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Science & Business Media; 2010. doi: 10.1007/978-1-4419-7011-4.  Google Scholar

[34]

M. A. FigueiredoR. D. Nowak and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 586-597.   Google Scholar

[35]

P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55 (2018), Paper No. 53, 17 pp. doi: 10.1007/s10092-018-0291-2.  Google Scholar

[36]

A. H. Ibrahim, J. Deepho, A. B. Abubakar and A. Adamu, A three-term Polak-Ribiére-Polyak derivative-free method and its application to image restoration, Scientific African, 13 (2021), e00880. Available from: https://www.sciencedirect.com/science/article/pii/S2468227621001848. Google Scholar

[37]

A. H. Ibrahim, J. Deepho, A. B. Abubakar and K. O. Aremu, A Modified Liu-Storey-Conjugate Descent Hybrid Projection Method for Convex Constrained Nonlinear Equations and Image Restoration, Numerical Algebra, Control & Optimization, 2021. Google Scholar

[38]

A. H. IbrahimG. A. IsaH. UsmanJ. Abubakar and A. B. Abubakar, Derivative-free RMIL conjugate gradient method for convex constrained equations, Thai J. Math., 18 (2019), 212-232.   Google Scholar

[39]

A. H. Ibrahim and P. Kumam, Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints, Ain Shams Engineering Journal, (2021). Google Scholar

[40]

A. H. IbrahimP. KumamA. B. AbubakarJ. Abubakar and A. B. Muhammad, Least-square-based three-term conjugate gradient projection method for $\ell_1$-norm problems with application to compressed sensing, Mathematics, 8 (2020), 602.   Google Scholar

[41]

A. H. IbrahimP. KumamA. B. AbubakarU. Batsari YusufS. E. Yimer and K. O. Aremu, An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration, AIMS Math., 6 (2021), 235-260.  doi: 10.3934/math.2021016.  Google Scholar

[42]

A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat and J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon, 6 (2020), e03466. Google Scholar

[43]

A. H. IbrahimP. KumamA. B. AbubakarU. B. Yusuf and J. Rilwan, Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery, J. Nonlinear Convex Anal., 21 (2020), 1959-1972.   Google Scholar

[44]

A. H. IbrahimP. KumamB. A. HassanA. B. Abubakar and J. Abubakar, A derivative-free three-term hestenes-stiefel type method for constrained nonlinear equations and image restoration, International Journal of Computer Mathematics, 0 (2021), 1-22.  doi: 10.1080/00207160.2021.1946043.  Google Scholar

[45]

A. H. IbrahimP. Kumam and W. Kumam, A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access, 8 (2020), 162714-162729.   Google Scholar

[46]

A. H. IbrahimK. MuangchooA. B. AbubakarA. D. Adedokun and H. Mohammed, Spectral conjugate gradient like method for signal reconstruction, Thai J. Math., 18 (2020), 2013-2022.   Google Scholar

[47]

A. H. IbrahimK. MuangchoobN. S. Mohamedc and A. B. Abubakar, Derivative-free SMR conjugate gradient method for con-straint nonlinear equations, Journal of Mathematics and Computer Science, 24 (2022), 147-164.   Google Scholar

[48]

W. La Cruz, J. M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments, Citeseer, 2004; Technical Report RT-04-08 (https://www.ime.unicamp.br/ martinez/lmrreport.pdf). Google Scholar

[49]

Q. Li and D.-H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635.  doi: 10.1093/imanum/drq015.  Google Scholar

[50]

D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311-325.  doi: 10.1007/s10851-014-0523-2.  Google Scholar

[51]

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361.  doi: 10.1016/0096-3003(87)90076-2.  Google Scholar

[52]

H. Mohammad, Barzilai-Borwein-like method for solving large-scale non-linear systems of equations, J. Nigerian Math. Soc., 36 (2017), 71-83.   Google Scholar

[53]

H. Mohammad and A. B. Abubakar, A descent derivative-free algorithm for nonlinear monotone equations with convex constraints, RAIRO Oper. Res., 54 (2020), 489-505.  doi: 10.1051/ro/2020008.  Google Scholar

[54]

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ž. Vyčisl. Mat i Mat. Fiz., 4 (1964), 791–803.  Google Scholar

[55]

L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Programming, 58 (1993), 353-367.  doi: 10.1007/BF01581275.  Google Scholar

[56]

M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776.  doi: 10.1137/S0363012997317475.  Google Scholar

[57]

M. Sun, J. Liu and Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020), Art. ID 9175496, 11 pp. doi: 10.1155/2020/9175496.  Google Scholar

[58]

D. V. Thong and D. V. Hieu, An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 19 (2017), 3029-3051.  doi: 10.1007/s11784-017-0464-7.  Google Scholar

[59]

D. V. Thong and D. V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597-610.  doi: 10.1007/s11075-017-0452-4.  Google Scholar

[60]

Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319.  doi: 10.1016/j.jmaa.2013.04.017.  Google Scholar

[61]

N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, In: Topics in Numerical Analysis, 15, Springer, Vienna, (2001), 239–249. doi: 10.1007/978-3-7091-6217-0_18.  Google Scholar

[62]

Z. YuJ. LinJ. SunY. XiaoL. Liu and Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.  doi: 10.1016/j.apnum.2009.04.004.  Google Scholar

Figure 1.  Performance profile on iteration (Iner.Algo versus Algo)
Figure 2.  Performance profile on function evaluations (Iner.Algo versus Algo)
Figure 3.  Performance profile on CPU time (Iner.Algo versus Algo)
Figure 4.  Numerical results of Problem (36) with $ \delta = 0 $
Figure 5.  Numerical results of Problem (36) with $ \delta = 10^{-4} $
Figure 6.  Numerical results of Problem (36) with $ \delta = 10^{-3} $
Figure 7.  Numerical results of Problem (36) with $ \delta = 10^{-2} $
Table 1.  Numerical results of Problem (36) with different noise
Standard deviation Methods RelErr Iter Times (s)
$ \delta $=0 Iner.Algo 0.0317 279 2.15
Algo 0.0317 468 3.15
$ \delta=10^{-4} $ Iner.Algo 0.0281 292 2.21
Algo 0.0281 593 4.22
$ \delta=10^{-3} $ Iner.Algo 0.0328 288 2.39
Algo 0.0241 438 2.96
$ \delta=10^{-2} $ Iner.Algo 0.0518 337 2.55
Algo 0.0518 939 6.75
Standard deviation Methods RelErr Iter Times (s)
$ \delta $=0 Iner.Algo 0.0317 279 2.15
Algo 0.0317 468 3.15
$ \delta=10^{-4} $ Iner.Algo 0.0281 292 2.21
Algo 0.0281 593 4.22
$ \delta=10^{-3} $ Iner.Algo 0.0328 288 2.39
Algo 0.0241 438 2.96
$ \delta=10^{-2} $ Iner.Algo 0.0518 337 2.55
Algo 0.0518 939 6.75
Table 2.  Test results for problem 1
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 6 24 0.006537 4.32E-08 11 44 0.009092 5.72E-07
Case II 7 28 0.008529 1.46E-07 11 44 0.013711 9.90E-07
Case III 7 28 0.006432 1.93E-07 12 48 0.013874 2.73E-07
Case IV 8 32 0.010414 1.79E-07 13 52 0.022209 3.00E-07
Case V 6 24 0.010836 7.10E-07 13 52 0.013571 6.02E-07
Case VI 8 32 0.00719 1.96E-07 13 52 0.010269 2.99E-07
Case VII 11 44 0.008426 1.12E-07 13 52 0.013525 6.09E-07
5000 Case I 6 24 0.22912 2.95E-08 12 48 0.10538 2.54E-07
Case II 7 28 0.85665 1.13E-07 12 48 0.079825 4.39E-07
Case III 7 28 0.53427 4.32E-07 12 48 0.032032 5.68E-07
Case IV 8 32 0.059319 3.98E-07 13 52 0.044075 4.28E-07
Case V 7 28 0.038857 3.61E-08 13 52 0.044154 4.83E-07
Case VI 8 32 0.065865 4.39E-07 13 52 0.18386 3.91E-07
Case VII 11 44 0.045807 3.86E-07 14 56 0.055375 2.68E-07
10000 Case I 6 24 0.055883 2.62E-08 12 48 0.26245 3.59E-07
Case II 7 28 0.10776 9.11E-08 12 48 0.084684 6.19E-07
Case III 7 28 0.12502 6.11E-07 12 48 0.07673 7.96E-07
Case IV 8 32 0.060193 5.62E-07 13 52 0.082261 5.60E-07
Case V 7 28 0.0602 5.18E-08 13 52 0.068433 4.87E-07
Case VI 8 32 0.05542 6.21E-07 13 52 0.066654 5.01E-07
Case VII 13 52 0.085591 1.80E-07 14 56 0.13534 3.78E-07
50000 Case I 6 24 0.17095 2.91E-08 12 48 0.23645 8.03E-07
Case II 7 28 0.15714 6.26E-08 13 52 0.25119 2.77E-07
Case III 8 32 0.57011 2.73E-08 13 52 0.21362 3.53E-07
Case IV 9 36 0.46934 2.51E-08 14 56 0.26703 2.34E-07
Case V 7 28 0.29169 1.17E-07 13 52 0.2287 7.20E-07
Case VI 9 36 0.2315 2.78E-08 14 56 0.24843 2.05E-07
Case VII 13 52 0.56004 2.37E-08 14 56 0.32785 8.43E-07
100000 Case I 6 24 0.98438 3.58E-08 13 52 0.43828 2.27E-07
Case II 7 28 0.39255 6.17E-08 13 52 0.62503 3.91E-07
Case III 8 32 0.48543 3.86E-08 13 52 0.42684 4.99E-07
Case IV 9 36 0.52322 3.56E-08 14 56 0.50903 3.28E-07
Case V 7 28 0.43716 1.66E-07 13 52 0.62726 9.52E-07
Case VI 9 36 0.54937 3.93E-08 14 56 0.49271 2.86E-07
Case VII 13 52 0.89929 4.99E-08 15 60 0.53354 2.38E-07
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 6 24 0.006537 4.32E-08 11 44 0.009092 5.72E-07
Case II 7 28 0.008529 1.46E-07 11 44 0.013711 9.90E-07
Case III 7 28 0.006432 1.93E-07 12 48 0.013874 2.73E-07
Case IV 8 32 0.010414 1.79E-07 13 52 0.022209 3.00E-07
Case V 6 24 0.010836 7.10E-07 13 52 0.013571 6.02E-07
Case VI 8 32 0.00719 1.96E-07 13 52 0.010269 2.99E-07
Case VII 11 44 0.008426 1.12E-07 13 52 0.013525 6.09E-07
5000 Case I 6 24 0.22912 2.95E-08 12 48 0.10538 2.54E-07
Case II 7 28 0.85665 1.13E-07 12 48 0.079825 4.39E-07
Case III 7 28 0.53427 4.32E-07 12 48 0.032032 5.68E-07
Case IV 8 32 0.059319 3.98E-07 13 52 0.044075 4.28E-07
Case V 7 28 0.038857 3.61E-08 13 52 0.044154 4.83E-07
Case VI 8 32 0.065865 4.39E-07 13 52 0.18386 3.91E-07
Case VII 11 44 0.045807 3.86E-07 14 56 0.055375 2.68E-07
10000 Case I 6 24 0.055883 2.62E-08 12 48 0.26245 3.59E-07
Case II 7 28 0.10776 9.11E-08 12 48 0.084684 6.19E-07
Case III 7 28 0.12502 6.11E-07 12 48 0.07673 7.96E-07
Case IV 8 32 0.060193 5.62E-07 13 52 0.082261 5.60E-07
Case V 7 28 0.0602 5.18E-08 13 52 0.068433 4.87E-07
Case VI 8 32 0.05542 6.21E-07 13 52 0.066654 5.01E-07
Case VII 13 52 0.085591 1.80E-07 14 56 0.13534 3.78E-07
50000 Case I 6 24 0.17095 2.91E-08 12 48 0.23645 8.03E-07
Case II 7 28 0.15714 6.26E-08 13 52 0.25119 2.77E-07
Case III 8 32 0.57011 2.73E-08 13 52 0.21362 3.53E-07
Case IV 9 36 0.46934 2.51E-08 14 56 0.26703 2.34E-07
Case V 7 28 0.29169 1.17E-07 13 52 0.2287 7.20E-07
Case VI 9 36 0.2315 2.78E-08 14 56 0.24843 2.05E-07
Case VII 13 52 0.56004 2.37E-08 14 56 0.32785 8.43E-07
100000 Case I 6 24 0.98438 3.58E-08 13 52 0.43828 2.27E-07
Case II 7 28 0.39255 6.17E-08 13 52 0.62503 3.91E-07
Case III 8 32 0.48543 3.86E-08 13 52 0.42684 4.99E-07
Case IV 9 36 0.52322 3.56E-08 14 56 0.50903 3.28E-07
Case V 7 28 0.43716 1.66E-07 13 52 0.62726 9.52E-07
Case VI 9 36 0.54937 3.93E-08 14 56 0.49271 2.86E-07
Case VII 13 52 0.89929 4.99E-08 15 60 0.53354 2.38E-07
Table 3.  Test results for problem 2
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 4 12 0.087572 7.61E-09 4 12 0.008488 5.17E-07
Case II 5 15 0.016259 6.04E-09 5 15 0.006875 6.04E-09
Case III 5 15 0.011455 4.37E-07 5 15 0.006569 4.37E-07
Case IV 6 18 0.011153 1.52E-07 6 18 0.008092 1.52E-07
Case V 7 21 0.00633 1.10E-09 7 21 0.005713 1.10E-09
Case VI 7 21 0.011702 1.74E-08 7 21 0.004815 1.74E-08
Case VII 11 35 0.012359 2.77E-07 15 49 0.021261 3.66E-07
5000 Case I 4 12 0.064074 8.56E-10 4 12 0.035632 1.75E-07
Case II 5 15 0.076987 6.27E-10 5 15 0.019409 6.27E-10
Case III 5 15 0.027949 1.42E-07 5 15 0.014664 1.42E-07
Case IV 6 18 0.036548 3.94E-08 6 18 0.026202 3.94E-08
Case V 6 18 0.01692 4.05E-07 6 18 0.018243 4.05E-07
Case VI 7 21 0.025943 2.36E-09 7 21 0.027663 2.36E-09
Case VII 13 43 0.094345 3.76E-09 18 62 0.19571 1.75E-07
10000 Case I 4 12 0.022826 3.98E-10 4 12 0.02201 1.21E-07
Case II 5 15 0.029782 2.79E-10 5 15 0.03389 2.79E-10
Case III 5 15 0.036108 9.73E-08 5 15 0.020746 9.73E-08
Case IV 6 18 0.031098 2.56E-08 6 18 0.031954 2.56E-08
Case V 6 18 0.11664 2.93E-07 6 18 0.13272 2.93E-07
Case VI 7 21 0.039807 1.24E-09 7 21 0.056343 1.24E-09
Case VII 13 43 0.37509 1.17E-08 20 69 0.12928 9.06E-08
50000 Case I 4 13 0.36887 1.05E-10 4 12 0.15651 6.32E-08
Case II 5 16 0.42862 6.75E-11 5 16 0.10554 6.75E-11
Case III 5 15 0.24321 4.87E-08 5 15 0.16698 4.87E-08
Case IV 6 18 0.46737 1.11E-08 6 18 0.1099 1.11E-08
Case V 6 18 0.13319 1.84E-07 6 18 0.11779 1.84E-07
Case VI 7 21 0.18161 4.01E-10 7 21 0.1203 4.01E-10
Case VII 16 54 0.46124 1.11E-09 23 81 0.5211 6.89E-07
100000 Case I 4 13 0.26038 6.80E-11 4 12 0.13094 5.40E-08
Case II 5 16 0.30277 4.27E-11 5 16 0.18755 4.27E-11
Case III 5 15 0.4347 4.05E-08 5 15 0.27985 4.05E-08
Case IV 6 18 0.42556 8.15E-09 6 18 0.19207 8.15E-09
Case V 6 18 0.25488 1.80E-07 6 18 0.20156 1.80E-07
Case VI 7 21 0.43576 2.71E-10 7 21 0.21005 2.71E-10
Case VII 15 51 0.82806 1.64E-09 24 86 1.1405 4.14E-09
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 4 12 0.087572 7.61E-09 4 12 0.008488 5.17E-07
Case II 5 15 0.016259 6.04E-09 5 15 0.006875 6.04E-09
Case III 5 15 0.011455 4.37E-07 5 15 0.006569 4.37E-07
Case IV 6 18 0.011153 1.52E-07 6 18 0.008092 1.52E-07
Case V 7 21 0.00633 1.10E-09 7 21 0.005713 1.10E-09
Case VI 7 21 0.011702 1.74E-08 7 21 0.004815 1.74E-08
Case VII 11 35 0.012359 2.77E-07 15 49 0.021261 3.66E-07
5000 Case I 4 12 0.064074 8.56E-10 4 12 0.035632 1.75E-07
Case II 5 15 0.076987 6.27E-10 5 15 0.019409 6.27E-10
Case III 5 15 0.027949 1.42E-07 5 15 0.014664 1.42E-07
Case IV 6 18 0.036548 3.94E-08 6 18 0.026202 3.94E-08
Case V 6 18 0.01692 4.05E-07 6 18 0.018243 4.05E-07
Case VI 7 21 0.025943 2.36E-09 7 21 0.027663 2.36E-09
Case VII 13 43 0.094345 3.76E-09 18 62 0.19571 1.75E-07
10000 Case I 4 12 0.022826 3.98E-10 4 12 0.02201 1.21E-07
Case II 5 15 0.029782 2.79E-10 5 15 0.03389 2.79E-10
Case III 5 15 0.036108 9.73E-08 5 15 0.020746 9.73E-08
Case IV 6 18 0.031098 2.56E-08 6 18 0.031954 2.56E-08
Case V 6 18 0.11664 2.93E-07 6 18 0.13272 2.93E-07
Case VI 7 21 0.039807 1.24E-09 7 21 0.056343 1.24E-09
Case VII 13 43 0.37509 1.17E-08 20 69 0.12928 9.06E-08
50000 Case I 4 13 0.36887 1.05E-10 4 12 0.15651 6.32E-08
Case II 5 16 0.42862 6.75E-11 5 16 0.10554 6.75E-11
Case III 5 15 0.24321 4.87E-08 5 15 0.16698 4.87E-08
Case IV 6 18 0.46737 1.11E-08 6 18 0.1099 1.11E-08
Case V 6 18 0.13319 1.84E-07 6 18 0.11779 1.84E-07
Case VI 7 21 0.18161 4.01E-10 7 21 0.1203 4.01E-10
Case VII 16 54 0.46124 1.11E-09 23 81 0.5211 6.89E-07
100000 Case I 4 13 0.26038 6.80E-11 4 12 0.13094 5.40E-08
Case II 5 16 0.30277 4.27E-11 5 16 0.18755 4.27E-11
Case III 5 15 0.4347 4.05E-08 5 15 0.27985 4.05E-08
Case IV 6 18 0.42556 8.15E-09 6 18 0.19207 8.15E-09
Case V 6 18 0.25488 1.80E-07 6 18 0.20156 1.80E-07
Case VI 7 21 0.43576 2.71E-10 7 21 0.21005 2.71E-10
Case VII 15 51 0.82806 1.64E-09 24 86 1.1405 4.14E-09
Table 4.  Test results for problem 3
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 13 52 0.075605 3.36E-07 31 124 0.023401 6.98E-07
Case II 14 56 0.033438 9.91E-07 32 126 0.016722 2.09E-22
Case III 15 59 0.014509 6.78E-07 34 135 0.029896 7.24E-07
Case IV 15 59 0.022327 8.58E-07 35 140 0.033452 8.69E-07
Case V 15 59 0.012348 4.93E-07 35 140 0.024649 9.73E-07
Case VI 16 64 0.011655 6.63E-07 36 142 0.041312 0
Case VII 15 60 0.019587 7.37E-07 34 136 0.018809 8.10E-07
5000 Case I 13 51 0.084308 7.51E-07 30 118 0.095447 0
Case II 15 60 0.052927 6.65E-07 31 122 0.50476 5.62E-21
Case III 16 62 0.08685 0 35 140 0.084126 9.71E-07
Case IV 16 62 0.054943 1.40E-21 36 143 0.095079 7.25E-21
Case V 16 64 0.10298 3.31E-07 35 138 0.26686 1.40E-21
Case VI 17 66 0.121 2.34E-22 36 142 0.16331 0
Case VII 16 64 0.82826 5.03E-07 36 144 0.16091 6.28E-07
10000 Case I 14 55 0.094948 3.19E-07 31 122 0.12401 6.62E-22
Case II 15 60 0.17919 9.40E-07 32 126 0.14805 0
Case III 16 62 0.085448 3.31E-22 36 143 0.13867 8.24E-07
Case IV 16 64 0.12333 8.14E-07 35 138 0.15826 2.65E-21
Case V 16 62 0.1041 3.31E-22 35 138 0.27449 6.62E-22
Case VI 17 66 0.11764 0 36 143 0.16026 2.65E-21
Case VII 16 64 0.081495 7.03E-07 36 144 0.19776 8.97E-07
50000 Case I 12 46 0.4807 1.15E-19 31 122 0.53862 2.96E-21
Case II 16 62 0.85283 0 31 122 0.5534 2.96E-21
Case III 16 62 0.43053 3.70E-21 33 130 0.66305 0
Case IV 15 58 0.34538 1.78E-20 34 134 0.59923 2.37E-20
Case V 17 66 0.45061 0 35 138 0.82508 1.48E-21
Case VI 18 72 0.46072 4.22E-07 36 143 0.62746 2.96E-21
Case VII 17 68 0.40219 4.73E-07 38 152 0.6653 7.24E-07
100000 Case I 15 60 0.73965 3.02E-07 31 122 1.139 2.09E-21
Case II 16 62 1.1267 5.23E-22 37 148 1.361 6.48E-07
Case III 17 68 0.58078 6.10E-07 38 151 1.5385 9.38E-07
Case IV 17 68 0.64576 7.73E-07 37 146 1.3166 0
Case V 17 68 0.77823 4.44E-07 40 158 1.4507 0
Case VI 17 66 0.67135 3.14E-21 40 159 1.4451 8.14E-07
Case VII 17 68 0.67963 6.70E-07 39 156 1.5115 6.14E-07
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 13 52 0.075605 3.36E-07 31 124 0.023401 6.98E-07
Case II 14 56 0.033438 9.91E-07 32 126 0.016722 2.09E-22
Case III 15 59 0.014509 6.78E-07 34 135 0.029896 7.24E-07
Case IV 15 59 0.022327 8.58E-07 35 140 0.033452 8.69E-07
Case V 15 59 0.012348 4.93E-07 35 140 0.024649 9.73E-07
Case VI 16 64 0.011655 6.63E-07 36 142 0.041312 0
Case VII 15 60 0.019587 7.37E-07 34 136 0.018809 8.10E-07
5000 Case I 13 51 0.084308 7.51E-07 30 118 0.095447 0
Case II 15 60 0.052927 6.65E-07 31 122 0.50476 5.62E-21
Case III 16 62 0.08685 0 35 140 0.084126 9.71E-07
Case IV 16 62 0.054943 1.40E-21 36 143 0.095079 7.25E-21
Case V 16 64 0.10298 3.31E-07 35 138 0.26686 1.40E-21
Case VI 17 66 0.121 2.34E-22 36 142 0.16331 0
Case VII 16 64 0.82826 5.03E-07 36 144 0.16091 6.28E-07
10000 Case I 14 55 0.094948 3.19E-07 31 122 0.12401 6.62E-22
Case II 15 60 0.17919 9.40E-07 32 126 0.14805 0
Case III 16 62 0.085448 3.31E-22 36 143 0.13867 8.24E-07
Case IV 16 64 0.12333 8.14E-07 35 138 0.15826 2.65E-21
Case V 16 62 0.1041 3.31E-22 35 138 0.27449 6.62E-22
Case VI 17 66 0.11764 0 36 143 0.16026 2.65E-21
Case VII 16 64 0.081495 7.03E-07 36 144 0.19776 8.97E-07
50000 Case I 12 46 0.4807 1.15E-19 31 122 0.53862 2.96E-21
Case II 16 62 0.85283 0 31 122 0.5534 2.96E-21
Case III 16 62 0.43053 3.70E-21 33 130 0.66305 0
Case IV 15 58 0.34538 1.78E-20 34 134 0.59923 2.37E-20
Case V 17 66 0.45061 0 35 138 0.82508 1.48E-21
Case VI 18 72 0.46072 4.22E-07 36 143 0.62746 2.96E-21
Case VII 17 68 0.40219 4.73E-07 38 152 0.6653 7.24E-07
100000 Case I 15 60 0.73965 3.02E-07 31 122 1.139 2.09E-21
Case II 16 62 1.1267 5.23E-22 37 148 1.361 6.48E-07
Case III 17 68 0.58078 6.10E-07 38 151 1.5385 9.38E-07
Case IV 17 68 0.64576 7.73E-07 37 146 1.3166 0
Case V 17 68 0.77823 4.44E-07 40 158 1.4507 0
Case VI 17 66 0.67135 3.14E-21 40 159 1.4451 8.14E-07
Case VII 17 68 0.67963 6.70E-07 39 156 1.5115 6.14E-07
Table 5.  Test results for problem 4
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 13 51 0.06059 3.25E-07 31 124 0.02262 6.43E-07
Case II 14 56 0.008665 7.01E-07 32 128 0.020618 7.10E-07
Case III 14 56 0.023062 7.14E-07 33 132 0.030138 8.25E-07
Case IV 14 56 0.009094 9.53E-07 33 132 0.022234 9.09E-07
Case V 15 60 0.019868 8.47E-07 32 128 0.020698 6.86E-07
Case VI 15 60 0.032655 7.79E-07 35 140 0.033957 6.08E-07
Case VII 16 64 0.016672 4.18E-07 33 132 0.030958 7.44E-07
5000 Case I 13 51 0.057064 7.27E-07 32 127 0.083999 8.63E-07
Case II 15 59 0.047515 4.70E-07 33 132 0.15239 9.52E-07
Case III 15 59 0.032093 4.79E-07 35 140 0.061537 6.64E-07
Case IV 15 59 0.062007 6.39E-07 35 140 0.13051 7.32E-07
Case V 16 63 0.045188 5.68E-07 33 132 0.071242 9.20E-07
Case VI 16 64 0.037473 5.22E-07 36 144 0.060172 8.16E-07
Case VII 16 64 0.030254 8.70E-07 35 140 0.072475 6.05E-07
10000 Case I - - - - 33 131 0.12064 7.32E-07
Case II 15 59 0.048278 6.65E-07 34 135 0.63105 8.08E-07
Case III 15 59 0.057155 6.77E-07 35 140 0.11101 9.39E-07
Case IV 15 60 0.060725 9.04E-07 36 143 0.1951 6.21E-07
Case V 16 63 0.053938 8.04E-07 34 135 0.12425 7.81E-07
Case VI 16 63 0.066593 7.39E-07 37 147 0.20795 6.92E-07
Case VII 17 68 0.057214 3.60E-07 35 140 0.12255 8.50E-07
50000 Case I 14 55 1.0077 6.89E-07 34 134 0.42136 0
Case II 16 63 0.61724 4.46E-07 35 138 0.43246 0
Case III 16 63 0.32509 4.54E-07 37 147 1.0982 7.56E-07
Case IV 16 63 0.19589 6.06E-07 37 148 0.59668 8.33E-07
Case V 17 66 0.24309 0 - - - -
Case VI - - - - - - - -
Case VII 17 68 0.2842 8.32E-07 37 148 0.47886 6.85E-07
100000 Case I 14 54 0.32344 0 - - - -
Case II 16 63 0.51789 6.31E-07 35 138 0.81304 0
Case III 16 62 0.5148 0 38 150 1.2176 0
Case IV - - - - 38 151 1.0824 7.07E-07
Case V 17 68 0.56565 7.63E-07 35 138 1.0007 0
Case VI 17 68 0.57103 7.01E-07 - - - -
Case VII 18 72 0.53447 3.50E-07 37 148 0.88698 9.70E-07
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 13 51 0.06059 3.25E-07 31 124 0.02262 6.43E-07
Case II 14 56 0.008665 7.01E-07 32 128 0.020618 7.10E-07
Case III 14 56 0.023062 7.14E-07 33 132 0.030138 8.25E-07
Case IV 14 56 0.009094 9.53E-07 33 132 0.022234 9.09E-07
Case V 15 60 0.019868 8.47E-07 32 128 0.020698 6.86E-07
Case VI 15 60 0.032655 7.79E-07 35 140 0.033957 6.08E-07
Case VII 16 64 0.016672 4.18E-07 33 132 0.030958 7.44E-07
5000 Case I 13 51 0.057064 7.27E-07 32 127 0.083999 8.63E-07
Case II 15 59 0.047515 4.70E-07 33 132 0.15239 9.52E-07
Case III 15 59 0.032093 4.79E-07 35 140 0.061537 6.64E-07
Case IV 15 59 0.062007 6.39E-07 35 140 0.13051 7.32E-07
Case V 16 63 0.045188 5.68E-07 33 132 0.071242 9.20E-07
Case VI 16 64 0.037473 5.22E-07 36 144 0.060172 8.16E-07
Case VII 16 64 0.030254 8.70E-07 35 140 0.072475 6.05E-07
10000 Case I - - - - 33 131 0.12064 7.32E-07
Case II 15 59 0.048278 6.65E-07 34 135 0.63105 8.08E-07
Case III 15 59 0.057155 6.77E-07 35 140 0.11101 9.39E-07
Case IV 15 60 0.060725 9.04E-07 36 143 0.1951 6.21E-07
Case V 16 63 0.053938 8.04E-07 34 135 0.12425 7.81E-07
Case VI 16 63 0.066593 7.39E-07 37 147 0.20795 6.92E-07
Case VII 17 68 0.057214 3.60E-07 35 140 0.12255 8.50E-07
50000 Case I 14 55 1.0077 6.89E-07 34 134 0.42136 0
Case II 16 63 0.61724 4.46E-07 35 138 0.43246 0
Case III 16 63 0.32509 4.54E-07 37 147 1.0982 7.56E-07
Case IV 16 63 0.19589 6.06E-07 37 148 0.59668 8.33E-07
Case V 17 66 0.24309 0 - - - -
Case VI - - - - - - - -
Case VII 17 68 0.2842 8.32E-07 37 148 0.47886 6.85E-07
100000 Case I 14 54 0.32344 0 - - - -
Case II 16 63 0.51789 6.31E-07 35 138 0.81304 0
Case III 16 62 0.5148 0 38 150 1.2176 0
Case IV - - - - 38 151 1.0824 7.07E-07
Case V 17 68 0.56565 7.63E-07 35 138 1.0007 0
Case VI 17 68 0.57103 7.01E-07 - - - -
Case VII 18 72 0.53447 3.50E-07 37 148 0.88698 9.70E-07
Table 6.  Test results for problem 5
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 25 95 0.1329 6.45E-07 36 139 0.019135 6.42E-07
Case II 19 72 0.014534 4.04E-07 36 140 0.018994 6.62E-07
Case III 22 86 0.022553 9.29E-07 47 175 0.044522 6.46E-07
Case IV 22 88 0.036427 4.00E-07 40 156 0.03131 6.54E-07
Case V 25 100 0.037173 4.90E-07 37 146 0.023349 7.12E-07
Case VI 41 164 0.071153 6.01E-07 36 143 0.037977 9.25E-07
Case VII 42 167 0.12029 4.55E-07 49 184 0.060357 9.87E-07
5000 Case I 22 83 0.13573 6.53E-07 36 139 0.11871 6.40E-07
Case II 19 72 0.11048 8.54E-07 37 144 0.088934 9.52E-07
Case III 25 98 0.090732 3.03E-07 51 189 0.10334 9.00E-07
Case IV 24 96 0.061785 8.38E-07 44 169 0.44477 9.18E-07
Case V 30 120 0.1862 4.11E-07 40 157 0.11434 6.51E-07
Case VI 54 216 0.33113 9.45E-07 41 160 0.10301 8.14E-07
Case VII 69 275 0.5637 3.29E-07 47 180 0.107 9.84E-07
10000 Case I 27 103 0.14553 4.01E-07 36 139 0.1347 7.33E-07
Case II 20 76 0.086196 3.64E-07 38 147 0.15397 8.23E-07
Case III 25 98 0.20935 8.75E-07 47 177 0.17983 7.72E-07
Case IV 24 96 0.19624 5.28E-07 44 170 0.19929 7.87E-07
Case V 35 140 0.1977 6.41E-07 42 163 0.18619 9.45E-07
Case VI 60 240 0.65802 4.12E-07 49 185 0.47874 7.04E-07
Case VII 84 335 0.96443 8.09E-07 43 169 0.1934 7.22E-07
50000 Case I 55 215 2.6998 9.96E-07 65 255 1.3087 8.37E-07
Case II 20 76 0.2954 8.35E-07 48 179 0.92835 6.84E-07
Case III 27 106 0.47985 8.73E-07 67 240 0.92921 6.31E-07
Case IV 41 164 1.7421 9.71E-07 47 181 0.72302 6.44E-07
Case V 36 144 1.5835 8.46E-07 45 174 0.86921 7.83E-07
Case VI 79 316 4.0512 6.61E-07 54 201 0.94527 9.68E-07
Case VII 103 411 6.5137 7.57E-07 52 204 0.79431 7.54E-07
100000 Case I 74 291 7.1551 8.21E-07 83 327 3.7002 7.04E-07
Case II 21 80 0.671 3.61E-07 46 173 1.4825 9.75E-07
Case III 26 102 0.89984 6.93E-07 55 204 1.6728 8.97E-07
Case IV 44 176 2.6239 8.75E-07 52 196 1.5811 9.15E-07
Case V 43 172 2.2944 8.30E-07 48 184 1.5047 6.71E-07
Case VI 99 396 12.5198 3.58E-07 47 181 1.4726 8.26E-07
Case VII 111 443 12.3882 5.20E-07 69 272 2.5982 7.84E-07
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 25 95 0.1329 6.45E-07 36 139 0.019135 6.42E-07
Case II 19 72 0.014534 4.04E-07 36 140 0.018994 6.62E-07
Case III 22 86 0.022553 9.29E-07 47 175 0.044522 6.46E-07
Case IV 22 88 0.036427 4.00E-07 40 156 0.03131 6.54E-07
Case V 25 100 0.037173 4.90E-07 37 146 0.023349 7.12E-07
Case VI 41 164 0.071153 6.01E-07 36 143 0.037977 9.25E-07
Case VII 42 167 0.12029 4.55E-07 49 184 0.060357 9.87E-07
5000 Case I 22 83 0.13573 6.53E-07 36 139 0.11871 6.40E-07
Case II 19 72 0.11048 8.54E-07 37 144 0.088934 9.52E-07
Case III 25 98 0.090732 3.03E-07 51 189 0.10334 9.00E-07
Case IV 24 96 0.061785 8.38E-07 44 169 0.44477 9.18E-07
Case V 30 120 0.1862 4.11E-07 40 157 0.11434 6.51E-07
Case VI 54 216 0.33113 9.45E-07 41 160 0.10301 8.14E-07
Case VII 69 275 0.5637 3.29E-07 47 180 0.107 9.84E-07
10000 Case I 27 103 0.14553 4.01E-07 36 139 0.1347 7.33E-07
Case II 20 76 0.086196 3.64E-07 38 147 0.15397 8.23E-07
Case III 25 98 0.20935 8.75E-07 47 177 0.17983 7.72E-07
Case IV 24 96 0.19624 5.28E-07 44 170 0.19929 7.87E-07
Case V 35 140 0.1977 6.41E-07 42 163 0.18619 9.45E-07
Case VI 60 240 0.65802 4.12E-07 49 185 0.47874 7.04E-07
Case VII 84 335 0.96443 8.09E-07 43 169 0.1934 7.22E-07
50000 Case I 55 215 2.6998 9.96E-07 65 255 1.3087 8.37E-07
Case II 20 76 0.2954 8.35E-07 48 179 0.92835 6.84E-07
Case III 27 106 0.47985 8.73E-07 67 240 0.92921 6.31E-07
Case IV 41 164 1.7421 9.71E-07 47 181 0.72302 6.44E-07
Case V 36 144 1.5835 8.46E-07 45 174 0.86921 7.83E-07
Case VI 79 316 4.0512 6.61E-07 54 201 0.94527 9.68E-07
Case VII 103 411 6.5137 7.57E-07 52 204 0.79431 7.54E-07
100000 Case I 74 291 7.1551 8.21E-07 83 327 3.7002 7.04E-07
Case II 21 80 0.671 3.61E-07 46 173 1.4825 9.75E-07
Case III 26 102 0.89984 6.93E-07 55 204 1.6728 8.97E-07
Case IV 44 176 2.6239 8.75E-07 52 196 1.5811 9.15E-07
Case V 43 172 2.2944 8.30E-07 48 184 1.5047 6.71E-07
Case VI 99 396 12.5198 3.58E-07 47 181 1.4726 8.26E-07
Case VII 111 443 12.3882 5.20E-07 69 272 2.5982 7.84E-07
Table 7.  Test results for problem 6
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 17 68 0.070165 3.66E-07 37 148 0.086194 8.53E-07
Case II 17 68 0.019243 3.42E-07 37 148 0.049573 8.20E-07
Case III 17 68 0.022663 3.01E-07 37 148 0.051928 7.22E-07
Case IV 16 64 0.016058 6.87E-07 36 144 0.074625 8.24E-07
Case V 16 64 0.028711 5.52E-07 36 144 0.080704 6.61E-07
Case VI 16 64 0.036264 3.25E-07 35 140 0.098138 6.50E-07
Case VII 17 68 0.029906 3.02E-07 37 148 0.057573 7.28E-07
5000 Case I 17 68 0.11976 8.21E-07 39 156 0.16301 6.87E-07
Case II 17 68 0.13738 7.66E-07 39 156 0.1438 6.61E-07
Case III 17 68 0.070333 6.75E-07 38 152 0.14908 9.71E-07
Case IV 17 68 0.097123 4.62E-07 38 152 0.16691 6.64E-07
Case V 17 68 0.070428 3.71E-07 37 148 0.15817 8.88E-07
Case VI 16 64 0.065808 7.29E-07 36 144 0.36454 8.73E-07
Case VII 17 68 0.089469 6.80E-07 38 152 0.19723 9.77E-07
10000 Case I 18 72 0.1274 3.48E-07 39 156 0.35497 9.72E-07
Case II 18 72 0.12939 3.25E-07 39 156 0.50582 9.35E-07
Case III 17 68 0.13873 9.55E-07 39 156 0.46728 8.24E-07
Case IV 17 68 0.13388 6.54E-07 38 152 0.2839 9.40E-07
Case V 17 68 0.20628 5.24E-07 38 152 0.27388 7.54E-07
Case VI 17 68 0.16002 3.09E-07 37 148 0.56098 7.41E-07
Case VII 17 68 0.16743 9.63E-07 39 156 0.46017 8.28E-07
50000 Case I 18 70 0.74334 0 40 158 1.2103 0
Case II 18 70 0.54759 0 40 158 1.4011 0
Case III 18 70 0.46758 0 39 154 1.3023 0
Case IV 18 70 0.47821 0 39 154 1.2953 0
Case V 18 70 0.51731 0 38 150 1.2347 0
Case VI 17 66 0.52485 0 37 146 1.2817 0
Case VII 18 70 0.55512 0 40 158 1.3476 0
100000 Case I 18 70 1.0765 0 39 154 2.4974 0
Case II 18 70 1.3017 0 39 154 2.5376 0
Case III 18 70 1.2128 0 38 150 2.45 0
Case IV 17 66 1.2676 0 38 150 2.3559 0
Case V 17 66 1.1563 0 37 146 2.4861 0
Case VI 17 66 1.0464 0 36 142 2.2564 0
Case VII 18 70 1.0587 0 39 154 2.6041 0
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 17 68 0.070165 3.66E-07 37 148 0.086194 8.53E-07
Case II 17 68 0.019243 3.42E-07 37 148 0.049573 8.20E-07
Case III 17 68 0.022663 3.01E-07 37 148 0.051928 7.22E-07
Case IV 16 64 0.016058 6.87E-07 36 144 0.074625 8.24E-07
Case V 16 64 0.028711 5.52E-07 36 144 0.080704 6.61E-07
Case VI 16 64 0.036264 3.25E-07 35 140 0.098138 6.50E-07
Case VII 17 68 0.029906 3.02E-07 37 148 0.057573 7.28E-07
5000 Case I 17 68 0.11976 8.21E-07 39 156 0.16301 6.87E-07
Case II 17 68 0.13738 7.66E-07 39 156 0.1438 6.61E-07
Case III 17 68 0.070333 6.75E-07 38 152 0.14908 9.71E-07
Case IV 17 68 0.097123 4.62E-07 38 152 0.16691 6.64E-07
Case V 17 68 0.070428 3.71E-07 37 148 0.15817 8.88E-07
Case VI 16 64 0.065808 7.29E-07 36 144 0.36454 8.73E-07
Case VII 17 68 0.089469 6.80E-07 38 152 0.19723 9.77E-07
10000 Case I 18 72 0.1274 3.48E-07 39 156 0.35497 9.72E-07
Case II 18 72 0.12939 3.25E-07 39 156 0.50582 9.35E-07
Case III 17 68 0.13873 9.55E-07 39 156 0.46728 8.24E-07
Case IV 17 68 0.13388 6.54E-07 38 152 0.2839 9.40E-07
Case V 17 68 0.20628 5.24E-07 38 152 0.27388 7.54E-07
Case VI 17 68 0.16002 3.09E-07 37 148 0.56098 7.41E-07
Case VII 17 68 0.16743 9.63E-07 39 156 0.46017 8.28E-07
50000 Case I 18 70 0.74334 0 40 158 1.2103 0
Case II 18 70 0.54759 0 40 158 1.4011 0
Case III 18 70 0.46758 0 39 154 1.3023 0
Case IV 18 70 0.47821 0 39 154 1.2953 0
Case V 18 70 0.51731 0 38 150 1.2347 0
Case VI 17 66 0.52485 0 37 146 1.2817 0
Case VII 18 70 0.55512 0 40 158 1.3476 0
100000 Case I 18 70 1.0765 0 39 154 2.4974 0
Case II 18 70 1.3017 0 39 154 2.5376 0
Case III 18 70 1.2128 0 38 150 2.45 0
Case IV 17 66 1.2676 0 38 150 2.3559 0
Case V 17 66 1.1563 0 37 146 2.4861 0
Case VI 17 66 1.0464 0 36 142 2.2564 0
Case VII 18 70 1.0587 0 39 154 2.6041 0
Table 8.  Test results for problem 7
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 9 36 0.029847 1.25E-07 14 56 0.010049 4.58E-07
Case II 8 32 0.01614 7.06E-07 14 56 0.009322 3.19E-07
Case III 7 28 0.036217 2.03E-07 11 44 0.014851 6.44E-07
Case IV 8 32 0.00896 1.86E-07 15 60 0.009756 2.52E-07
Case V 9 36 0.012299 2.91E-07 15 60 0.014388 3.91E-07
Case VI 9 35 0.012932 3.19E-07 15 59 0.01453 2.82E-07
Case VII 9 36 0.015981 3.43E-07 14 56 0.017579 3.00E-07
5000 Case I 9 36 0.040232 2.79E-07 15 60 0.06212 2.57E-07
Case II 9 36 0.038549 1.30E-07 14 56 0.035553 7.13E-07
Case III 7 28 0.02036 4.53E-07 12 48 0.037788 3.61E-07
Case IV 8 32 0.025654 4.15E-07 15 60 0.035425 5.64E-07
Case V 9 36 0.026546 6.51E-07 15 60 0.12771 8.73E-07
Case VI 9 35 0.096229 7.14E-07 15 59 0.044662 6.31E-07
Case VII 9 36 0.093227 7.84E-07 14 56 0.053641 6.71E-07
10000 Case I 9 36 0.054105 3.95E-07 15 60 0.055328 3.64E-07
Case II 9 36 0.10633 1.84E-07 15 60 0.10212 2.53E-07
Case III 7 28 0.037857 6.41E-07 12 48 0.066777 5.11E-07
Case IV 8 32 0.082416 5.87E-07 15 60 0.071481 7.98E-07
Case V 9 36 0.18582 9.20E-07 16 64 0.059125 3.10E-07
Case VI 10 39 0.070373 8.34E-08 15 59 0.081851 8.93E-07
Case VII 10 40 0.071963 9.12E-08 14 56 0.31755 9.38E-07
50000 Case I 9 36 0.36461 8.84E-07 15 60 0.32342 8.14E-07
Case II 9 36 0.27196 4.12E-07 15 60 0.3605 5.66E-07
Case III 8 32 0.25501 1.18E-07 13 52 0.22338 2.87E-07
Case IV 9 36 0.22228 1.08E-07 16 64 0.26331 4.48E-07
Case V 10 40 0.25618 1.70E-07 16 64 0.27305 6.94E-07
Case VI 10 39 0.27278 1.87E-07 16 63 0.28175 5.01E-07
Case VII 10 40 0.22836 2.04E-07 15 60 0.75345 5.27E-07
100000 Case I 10 40 0.57002 1.03E-07 16 64 0.56535 2.89E-07
Case II 9 36 0.34715 5.83E-07 15 60 0.66238 8.01E-07
Case III 8 32 0.41892 1.67E-07 13 52 0.45765 4.06E-07
Case IV 9 36 0.34291 1.53E-07 16 64 0.68567 6.34E-07
Case V 10 40 0.53349 2.40E-07 16 64 0.51067 9.81E-07
Case VI 10 39 0.35763 2.64E-07 16 63 0.5497 7.09E-07
Case VII 10 40 0.55468 2.88E-07 15 60 0.6995 7.46E-07
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 9 36 0.029847 1.25E-07 14 56 0.010049 4.58E-07
Case II 8 32 0.01614 7.06E-07 14 56 0.009322 3.19E-07
Case III 7 28 0.036217 2.03E-07 11 44 0.014851 6.44E-07
Case IV 8 32 0.00896 1.86E-07 15 60 0.009756 2.52E-07
Case V 9 36 0.012299 2.91E-07 15 60 0.014388 3.91E-07
Case VI 9 35 0.012932 3.19E-07 15 59 0.01453 2.82E-07
Case VII 9 36 0.015981 3.43E-07 14 56 0.017579 3.00E-07
5000 Case I 9 36 0.040232 2.79E-07 15 60 0.06212 2.57E-07
Case II 9 36 0.038549 1.30E-07 14 56 0.035553 7.13E-07
Case III 7 28 0.02036 4.53E-07 12 48 0.037788 3.61E-07
Case IV 8 32 0.025654 4.15E-07 15 60 0.035425 5.64E-07
Case V 9 36 0.026546 6.51E-07 15 60 0.12771 8.73E-07
Case VI 9 35 0.096229 7.14E-07 15 59 0.044662 6.31E-07
Case VII 9 36 0.093227 7.84E-07 14 56 0.053641 6.71E-07
10000 Case I 9 36 0.054105 3.95E-07 15 60 0.055328 3.64E-07
Case II 9 36 0.10633 1.84E-07 15 60 0.10212 2.53E-07
Case III 7 28 0.037857 6.41E-07 12 48 0.066777 5.11E-07
Case IV 8 32 0.082416 5.87E-07 15 60 0.071481 7.98E-07
Case V 9 36 0.18582 9.20E-07 16 64 0.059125 3.10E-07
Case VI 10 39 0.070373 8.34E-08 15 59 0.081851 8.93E-07
Case VII 10 40 0.071963 9.12E-08 14 56 0.31755 9.38E-07
50000 Case I 9 36 0.36461 8.84E-07 15 60 0.32342 8.14E-07
Case II 9 36 0.27196 4.12E-07 15 60 0.3605 5.66E-07
Case III 8 32 0.25501 1.18E-07 13 52 0.22338 2.87E-07
Case IV 9 36 0.22228 1.08E-07 16 64 0.26331 4.48E-07
Case V 10 40 0.25618 1.70E-07 16 64 0.27305 6.94E-07
Case VI 10 39 0.27278 1.87E-07 16 63 0.28175 5.01E-07
Case VII 10 40 0.22836 2.04E-07 15 60 0.75345 5.27E-07
100000 Case I 10 40 0.57002 1.03E-07 16 64 0.56535 2.89E-07
Case II 9 36 0.34715 5.83E-07 15 60 0.66238 8.01E-07
Case III 8 32 0.41892 1.67E-07 13 52 0.45765 4.06E-07
Case IV 9 36 0.34291 1.53E-07 16 64 0.68567 6.34E-07
Case V 10 40 0.53349 2.40E-07 16 64 0.51067 9.81E-07
Case VI 10 39 0.35763 2.64E-07 16 63 0.5497 7.09E-07
Case VII 10 40 0.55468 2.88E-07 15 60 0.6995 7.46E-07
Table 9.  Test results for problem 8
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 11 38 0.032713 3.88E-07 16 58 0.00921 9.66E-07
Case II 11 38 0.010107 3.88E-07 16 58 0.00733 9.66E-07
Case III 11 39 0.0097 3.88E-07 16 59 0.010495 9.66E-07
Case IV 11 39 0.008542 3.88E-07 16 59 0.013631 9.66E-07
Case V 11 39 0.010247 3.88E-07 16 59 0.009248 9.66E-07
Case VI 11 39 0.014019 3.88E-07 16 59 0.01325 9.66E-07
Case VII 11 39 0.010456 3.88E-07 16 59 0.015507 9.66E-07
5000 Case I 8 29 0.029519 8.46E-07 12 46 0.03298 6.18E-07
Case II 8 30 0.028146 8.46E-07 12 46 0.028464 6.18E-07
Case III 8 30 0.031133 8.46E-07 12 46 0.026699 6.18E-07
Case IV 8 30 0.032266 8.46E-07 12 46 0.065305 6.18E-07
Case V 8 30 0.043717 8.46E-07 12 46 0.033667 6.18E-07
Case VI 8 30 0.075426 8.46E-07 12 46 0.032206 6.18E-07
Case VII 8 30 0.043783 8.46E-07 12 46 0.052994 6.18E-07
10000 Case I 7 26 0.070454 5.16E-07 9 35 0.045216 7.70E-07
Case II 7 27 0.053641 5.16E-07 9 35 0.059089 7.70E-07
Case III 7 27 0.094187 5.16E-07 9 35 0.045507 7.70E-07
Case IV 7 27 0.20473 5.16E-07 9 35 0.074929 7.70E-07
Case V 7 27 0.071282 5.16E-07 9 35 0.075532 7.70E-07
Case VI 7 27 0.064401 5.16E-07 9 35 0.065486 7.70E-07
Case VII 7 27 0.098105 5.16E-07 9 35 0.055328 7.70E-07
50000 Case I 6 24 0.22768 1.49E-07 12 48 0.35733 5.55E-07
Case II 6 24 0.28215 1.49E-07 12 48 0.34089 5.55E-07
Case III 6 24 0.72157 1.49E-07 12 48 0.30864 5.55E-07
Case IV 6 24 0.53086 1.49E-07 12 48 0.37903 5.55E-07
Case V 6 24 0.39711 1.49E-07 12 48 0.34614 5.55E-07
Case VI 6 24 0.48753 1.49E-07 12 48 0.41103 5.55E-07
Case VII 6 24 0.29061 1.49E-07 12 48 0.33605 5.55E-07
100000 Case I 6 24 0.66013 6.95E-07 6 24 0.43192 5.77E-07
Case II 6 24 0.60689 6.95E-07 6 24 0.30724 5.77E-07
Case III 6 24 0.78423 6.95E-07 6 24 0.46109 5.77E-07
Case IV 6 24 0.7826 6.95E-07 6 24 0.37262 5.77E-07
Case V 6 24 0.70311 6.95E-07 6 24 0.40775 5.77E-07
Case VI 6 24 0.9559 6.95E-07 6 24 0.38522 5.77E-07
Case VII 6 24 0.68726 6.95E-07 6 24 0.48134 5.77E-07
INER. ALGO ALGO.
DIM INP NI NF CPU NORM NI NF CPU NORM
1000 Case I 11 38 0.032713 3.88E-07 16 58 0.00921 9.66E-07
Case II 11 38 0.010107 3.88E-07 16 58 0.00733 9.66E-07
Case III 11 39 0.0097 3.88E-07 16 59 0.010495 9.66E-07
Case IV 11 39 0.008542 3.88E-07 16 59 0.013631 9.66E-07
Case V 11 39 0.010247 3.88E-07 16 59 0.009248 9.66E-07
Case VI 11 39 0.014019 3.88E-07 16 59 0.01325 9.66E-07
Case VII 11 39 0.010456 3.88E-07 16 59 0.015507 9.66E-07
5000 Case I 8 29 0.029519 8.46E-07 12 46 0.03298 6.18E-07
Case II 8 30 0.028146 8.46E-07 12 46 0.028464 6.18E-07
Case III 8 30 0.031133 8.46E-07 12 46 0.026699 6.18E-07
Case IV 8 30 0.032266 8.46E-07 12 46 0.065305 6.18E-07
Case V 8 30 0.043717 8.46E-07 12 46 0.033667 6.18E-07
Case VI 8 30 0.075426 8.46E-07 12 46 0.032206 6.18E-07
Case VII 8 30 0.043783 8.46E-07 12 46 0.052994 6.18E-07
10000 Case I 7 26 0.070454 5.16E-07 9 35 0.045216 7.70E-07
Case II 7 27 0.053641 5.16E-07 9 35 0.059089 7.70E-07
Case III 7 27 0.094187 5.16E-07 9 35 0.045507 7.70E-07
Case IV 7 27 0.20473 5.16E-07 9 35 0.074929 7.70E-07
Case V 7 27 0.071282 5.16E-07 9 35 0.075532 7.70E-07
Case VI 7 27 0.064401 5.16E-07 9 35 0.065486 7.70E-07
Case VII 7 27 0.098105 5.16E-07 9 35 0.055328 7.70E-07
50000 Case I 6 24 0.22768 1.49E-07 12 48 0.35733 5.55E-07
Case II 6 24 0.28215 1.49E-07 12 48 0.34089 5.55E-07
Case III 6 24 0.72157 1.49E-07 12 48 0.30864 5.55E-07
Case IV 6 24 0.53086 1.49E-07 12 48 0.37903 5.55E-07
Case V 6 24 0.39711 1.49E-07 12 48 0.34614 5.55E-07
Case VI 6 24 0.48753 1.49E-07 12 48 0.41103 5.55E-07
Case VII 6 24 0.29061 1.49E-07 12 48 0.33605 5.55E-07
100000 Case I 6 24 0.66013 6.95E-07 6 24 0.43192 5.77E-07
Case II 6 24 0.60689 6.95E-07 6 24 0.30724 5.77E-07
Case III 6 24 0.78423 6.95E-07 6 24 0.46109 5.77E-07
Case IV 6 24 0.7826 6.95E-07 6 24 0.37262 5.77E-07
Case V 6 24 0.70311 6.95E-07 6 24 0.40775 5.77E-07
Case VI 6 24 0.9559 6.95E-07 6 24 0.38522 5.77E-07
Case VII 6 24 0.68726 6.95E-07 6 24 0.48134 5.77E-07
[1]

Yigui Ou, Wenjie Xu. A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021125

[2]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

[3]

Gaohang Yu. A derivative-free method for solving large-scale nonlinear systems of equations. Journal of Industrial & Management Optimization, 2010, 6 (1) : 149-160. doi: 10.3934/jimo.2010.6.149

[4]

Dong-Hui Li, Xiao-Lin Wang. A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 71-82. doi: 10.3934/naco.2011.1.71

[5]

A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319

[6]

Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169

[7]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[8]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[9]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[10]

Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017

[11]

Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021022

[12]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[13]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[14]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[15]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[16]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

[17]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[18]

Jun Takaki, Nobuo Yamashita. A derivative-free trust-region algorithm for unconstrained optimization with controlled error. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 117-145. doi: 10.3934/naco.2011.1.117

[19]

Wanyou Cheng, Zixin Chen, Donghui Li. Nomonotone spectral gradient method for sparse recovery. Inverse Problems & Imaging, 2015, 9 (3) : 815-833. doi: 10.3934/ipi.2015.9.815

[20]

Morten Brøns. An iterative method for the canard explosion in general planar systems. Conference Publications, 2013, 2013 (special) : 77-83. doi: 10.3934/proc.2013.2013.77

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (106)
  • HTML views (293)
  • Cited by (0)

[Back to Top]