
-
Previous Article
Optimal distribution strategy and online channel mode by considering retailer's fairness concerns
- JIMO Home
- This Issue
-
Next Article
A modification of Galerkin's method for option pricing
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
A revised imperialist competition algorithm for cellular manufacturing optimization based on product line design
1. | School of Management, Hangzhou Dianzi University, Hangzhou 310018, China |
2. | Department of Mathematics, China Jiliang University, Hangzhou 310018, China |
Due to the fierce market competition, enterprises try to satisfy customers' requirements for personalized products in order to maximize profit or market share of their products. This not only needs to determine the product variants through product line design, but also needs to pay attention to resource allocation in the manufacturing process. This paper proposes a cellular manufacturing optimization model that considers the market and production. If the company excessively pursues the satisfaction of customers' personalized needs, the manufacturing time and cost may increase accordingly. Of course, with the restriction of production capacity in manufacturing cells and the expectation of reducing cost, managers cannot design attributes' levels of a product line casually, which may result in its unstable marketing share and profit. Therefore, the product demand influenced by customers' preferences could be a key factor to link market and production. The objective of propose model is to maximize product profit which consists of revenue and miscellaneous costs (material, processing, transportation, final assembly and fixed costs). A revised imperialist competitive algorithm (RICA) is developed to optimize the discrete problem. Extensive numerical experiments and t-test are carried out to verify the effect of this method. The results demonstrate the proficiency of RICA over another imperialist competitive algorithm based method and genetic algorithm in terms of solution quality.
References:
[1] |
M. Abdollahi, A. Isazadeh and D. Abdollahi,
Imperialist competitive algorithm for solving systems of nonlinear equations, Comput. Math. Appl., 65 (2013), 1894-1908.
doi: 10.1016/j.camwa.2013.04.018. |
[2] |
M. A. Achabou, S. Dekhili and A. P. Codini,
Consumer preferences towards animal-friendly fashion products: An application to the italian market, Journal of Consumer Marketing, 37 (2020), 661-673.
doi: 10.1108/JCM-10-2018-2908. |
[3] |
S. Agnew and P. Dargusch,
Consumer preferences for household-level battery energy storage, Renewable and Sustainable Energy Reviews, 75 (2017), 609-617.
doi: 10.1016/j.rser.2016.11.030. |
[4] |
M. A. Ardeh, M. B. Menhaj, E. Esmailian and H. ZandHessami,
Explica: An explorative imperialist competitive algorithm based on the notion of Explorers with an expansive retention policy, Applied Soft Computing, 54 (2017), 74-92.
doi: 10.1016/j.asoc.2017.01.025. |
[5] |
A. A. Azami, P. Payvandy and M. M. Jalili,
Parameter estimation of viscoelastic model to simulate the compression behavior of artificial grass under dynamic loading using imperialist competitive algorithm, Journal of Textiles and Polymers, 9 (2021), 3-11.
|
[6] |
M. Bagheri and M. Bashiri,
A hybrid genetic and imperialist competitive algorithm approach to dynamic cellular manufacturing system, Proceedings of the Institution of Mechanical Engineers, 228 (2014), 458-470.
doi: 10.1177/0954405413500662. |
[7] |
A. Ballakur, An Investigation of Part Family/Machine Group Formation in Designing A Cellular Manufacturing System, Ph. D. Thesis, University of Wisconsin, Madison, WI, 1985. |
[8] |
B. Bootaki, I. Mahdavi and M. M. Paydar,
A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills, Computers & Industrial Engineering, 75 (2014), 31-40.
|
[9] |
D. Cao, K. Ramani and Z. Li, Guiding concept generation based on ontology for customer preference modeling, The Eighth International Symposium on Tools and Methods of Competitive Engineering, Italy, (2010), 1–14. |
[10] |
H. Garg, Handbook of research on artificial intelligence techniques and algorithms, Chapter A Hybrid GA-GSA Algorithm for Optimizing the Performance of An Industrial System by Utilizing Uncertain Data, (2015), 620–654. |
[11] |
H. Garg,
A hybrid PSO-GA algorithm for constrained optimization problems, Appl. Math. Comput., 274 (2016), 292-305.
doi: 10.1016/j.amc.2015.11.001. |
[12] |
H. Garg,
A hybrid GSA-GA algorithm for constrained optimization problems, Information Sciences, 478 (2019), 499-523.
|
[13] |
S. Grasso and D. Asioli,
Consumer preferences for upcycled ingredients: A case study with biscuits, Food Quality and Preference, 84 (2020), 1-9.
doi: 10.1016/j.foodqual.2020.103951. |
[14] |
Y. Gupta, M. Gupta, A. Kumar and C. Sundaram,
A genetic algorithm-based approach to cell composition and layout design problems, International J. Production Research, 34 (1996), 447-482.
doi: 10.1080/00207549608904913. |
[15] |
J. A. Howard and J. N. Sheth, The Theory of Buyer Behavior, John Wiley & Sons, Inc., New York, 1969. |
[16] |
J. Jouzdani, F. Barzinpour, M. A. Shafia and M. Fathian,
Applying simulated annealing to a generalized cell formation problem considering alternative routings and machine reliability, Asia-Pacific Journal of Operational Research, 31 (2014), 1-26.
doi: 10.1142/S0217595914500213. |
[17] |
R. Kamalakannan and R. S. Pandian,
A tabu search strategy to solve cell formation problem with ratio level data, International J. Enterprise Network Management, 13 (2018), 209-220.
doi: 10.1504/IJBIDM.2018.088431. |
[18] |
M. Kargar and P. Payvandy,
Optimization of fabric layout by using imperialist competitive algorithm, J. Textile and Polymer, 3 (2015), 55-63.
|
[19] |
A. H. Kashan, B. Karimi and A. Noktehdan,
A novel discrete particle swarm optimization algorithm for the manufacturing cell formation problem, International J. Advanced Manufacturing Technology, 73 (2014), 1543-1556.
|
[20] |
R. Kia, A. Baboli, N. Javadian, R. Tavakkoli-Moghaddam, M. Kazemi and J. Khorrami,
Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing, Comput. Oper. Res., 39 (2012), 2642-2658.
doi: 10.1016/j.cor.2012.01.012. |
[21] |
J. R. King and V. Nakornchai,
Machine-component group formation in group technology: Review and extension, International J. Production Research, 20 (1982), 117-133.
doi: 10.1080/00207548208947754. |
[22] |
M. Kuzmanovic and M. Martic,
An approach to competitive product line design using conjoint data, Expert Systems with Applications, 39 (2012), 7262-7269.
doi: 10.1016/j.eswa.2012.01.097. |
[23] |
M. Kuzmanovic, M. Martic and M. Vujosevic,
Designing a profit-maximizing product line for heterogeneous market, Technical Gazette, 26 (2019), 1562-1569.
|
[24] |
Y. Li, X. Li and J. N. D. Gupta,
Solving the multi-objective flowline manufacturing cell scheduling problem by hybrid harmony search, Expert Systems with Applications, 42 (2015), 1409-1417.
doi: 10.1016/j.eswa.2014.09.007. |
[25] |
C. Liu, J. Wang, J. Y.-T. Leung and K. Li,
Solving cell formation and task scheduling in cellular manufacturing system by discrete bacteria foraging algorithm, International J. Production Research, 54 (2016), 923-944.
doi: 10.1080/00207543.2015.1113328. |
[26] |
C. Liu, J. Wang and M. Zhou,
Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach, IEEE Transactions on Automation Science and Engineering, 16 (2019), 1301-1314.
doi: 10.1109/TASE.2018.2878653. |
[27] |
C. Liu and J. Wang,
Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing, International J. Computational Intelligence Systems, 9 (2016), 765-777.
doi: 10.1080/18756891.2016.1204123. |
[28] |
C. Liu, J. Wang and J. Y.-T. Leung, Worker assignment and production planning with learning and forgetting in manufacturing cells by hybrid bacteria foraging algorithm, Computers & Industrial Engineering, 96 (2016), 162–179.
doi: 10.1016/j.cie.2016.03.020. |
[29] |
C. Liu, J. Wang and J. Y.-T. Leung,
Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning, Applied Soft Computing, 62 (2018), 602-618.
doi: 10.1016/j.asoc.2017.10.034. |
[30] |
E. Mehdizadeh, S. V. D. Niaki and V. Rahimi, A vibration damping optimization algorithm for solving a new multi-objective dynamic cell formation problem with workers training, Computers & Industrial Engineering, 101 (2016), 35–52.
doi: 10.1016/j.cie.2016.08.012. |
[31] |
J. J. Michalek, O. Ceryan, P. Y. Papalambros and Y. Koren,
Balancing marketing and manufacturing objectives in product line design, J. Mech. Des., 128 (2006), 1196-1204.
doi: 10.1115/1.2336252. |
[32] |
J. J. Michalek, P. Ebbes, F. Adigzel, F. M. Feinberg and P. Y. Papalambros,
Enhancing marketing with engineering: Optimal product line design for heterogeneous markets, International J. Research in Marketing, 28 (2011), 1-12.
doi: 10.1016/j.ijresmar.2010.08.001. |
[33] |
S. M. Mousavi, R. Tavakkoli-Moghaddam, B. Vahdani, H. Hashemi and M. J. Sanjari,
A new support vector model-based imperialist competitive algorithm for time estimation in new product development projects, Robotics and Computer-Integrated Manufacturing, 29 (2013), 157-168.
doi: 10.1016/j.rcim.2012.04.006. |
[34] |
K. Nemati, S. M. Shamsuddin and M. S. Kamarposhti,
Using imperial competitive algorithm for solving traveling salesman problem and comparing the efficiency of the proposed algorithm with methods in use, Australian J. Basic and Applied Science, 5 (2011), 540-543.
|
[35] |
C. Y. Ng and K. M. Y. Law,
Investigating consumer preferences on product designs by analyzing opinions from social networks using evidential reasoning, Computers & Industrial Engineerin, 139 (2020), 1-11.
doi: 10.1016/j.cie.2019.106180. |
[36] |
F. Niakan, A. Baboli, T. Moyaux and V. Botta-Genoulaz,
A new multi-objective mathematical model for dynamic cell formation under demand and cost uncertainty considering social criteria, Appl. Math. Model., 40 (2016), 2674-2691.
doi: 10.1016/j.apm.2015.09.047. |
[37] |
S. W. Norton,
The coast theorem and suboptimization in marketing channels, Marketing Science, 6 (1987), 268-285.
|
[38] |
R. S. Patwal, N. Narang and H. Garg,
A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units, Energy, 142 (2018), 822-837.
|
[39] |
S. J. M. Rad, A. F. Tab and K. Mollazade,
Application of imperialist competitive algorithm for feature selection: A case study on bulk rice classification, Inter. J. Computer Appl., 40 (2012), 41-48.
|
[40] |
P. Tarasewich and R. R. McMullen,
A pruning heuristic for use with multisource product design, European J. Operational Research, 128 (2001), 58-73.
doi: 10.1016/S0377-2217(99)00350-1. |
[41] |
P. B. Tookanlou and H. Wong,
Determining the optimal customization levels, lead times and inventory positioning in vertical product differentiation, Inter. J. Production Economics, 221 (2020), 1-20.
doi: 10.1016/j.ijpe.2019.08.014. |
[42] |
P. B. Tookanlou and H. W. Wong,
Product line design with vertical and horizontal consumer heterogeneity: The effect of distribution channel structure on the optimal quality and customization levels, European J. Marketing, 55 (2020), 95-131.
|
[43] |
S. Tsafarakis, C. Saridakis, G. Baltas and N. Matsatsinis,
Hybrid particle swarm optimization with mutation for optimizing industrial product lines: An application to a mixed solution space considering both discrete and continuous design variables, Industrial Marketing Management, 42 (2013), 496-506.
doi: 10.1016/j.indmarman.2013.03.002. |
[44] |
S. Tsafarakis, K. Zervoudakis, A. Andronikidis and E. Altsitsiadis,
Fuzzy self-tuning differential evolution for optimal product line design, European J. Oper. Res., 287 (2020), 1161-1169.
doi: 10.1016/j.ejor.2020.05.018. |
[45] |
J. Wang, C. Liu and K. Li,
A hybrid simulated annealing for scheduling in dual-resource cellular manufacturing system considering worker movement, Automatika, 60 (2019), 172-180.
doi: 10.1080/00051144.2019.1603264. |
[46] |
J. Wang, C. Liu and M. Zhou,
Improved bacterial foraging algorithm for cell formation and product scheduling considering learning and forgetting factors in cellular manufacturing systems, IEEE Systems Journal, 14 (2020), 3047-3056.
doi: 10.1109/JSYST.2019.2963222. |
[47] |
M. Zandieh, A. R. Khatami and S. H. A. Rahmati,
Flexible job shop scheduling under condition-based maintenance: Improved version of imperialist competitive algorithm, Applied Soft Computing, 58 (2017), 449-464.
|
[48] |
S. Zhang, J. Zhang, J. Shen and W. Tang,
A joint dynamic pricing and production model with asymmetric reference price effect, J. Ind. Manag. Optim., 15 (2019), 667-688.
doi: 10.3934/jimo.2018064. |
[49] |
Z. Zhao, Study on Multi-Strategy Dynamic Scheduling Optimization Algorithm in Rotating Seru System, Master's Thesis, Dongbei University of Finance and Economics, Dalian, China, 2017. |
[50] |
A. M. Zohrevand, H. Rafiei and A. H. Zohrevand,
Multi-objective dynamic cell formation problem: A stochastic programming approach, Computers & Industrial Engineering, 98 (2016), 323-332.
|
show all references
References:
[1] |
M. Abdollahi, A. Isazadeh and D. Abdollahi,
Imperialist competitive algorithm for solving systems of nonlinear equations, Comput. Math. Appl., 65 (2013), 1894-1908.
doi: 10.1016/j.camwa.2013.04.018. |
[2] |
M. A. Achabou, S. Dekhili and A. P. Codini,
Consumer preferences towards animal-friendly fashion products: An application to the italian market, Journal of Consumer Marketing, 37 (2020), 661-673.
doi: 10.1108/JCM-10-2018-2908. |
[3] |
S. Agnew and P. Dargusch,
Consumer preferences for household-level battery energy storage, Renewable and Sustainable Energy Reviews, 75 (2017), 609-617.
doi: 10.1016/j.rser.2016.11.030. |
[4] |
M. A. Ardeh, M. B. Menhaj, E. Esmailian and H. ZandHessami,
Explica: An explorative imperialist competitive algorithm based on the notion of Explorers with an expansive retention policy, Applied Soft Computing, 54 (2017), 74-92.
doi: 10.1016/j.asoc.2017.01.025. |
[5] |
A. A. Azami, P. Payvandy and M. M. Jalili,
Parameter estimation of viscoelastic model to simulate the compression behavior of artificial grass under dynamic loading using imperialist competitive algorithm, Journal of Textiles and Polymers, 9 (2021), 3-11.
|
[6] |
M. Bagheri and M. Bashiri,
A hybrid genetic and imperialist competitive algorithm approach to dynamic cellular manufacturing system, Proceedings of the Institution of Mechanical Engineers, 228 (2014), 458-470.
doi: 10.1177/0954405413500662. |
[7] |
A. Ballakur, An Investigation of Part Family/Machine Group Formation in Designing A Cellular Manufacturing System, Ph. D. Thesis, University of Wisconsin, Madison, WI, 1985. |
[8] |
B. Bootaki, I. Mahdavi and M. M. Paydar,
A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills, Computers & Industrial Engineering, 75 (2014), 31-40.
|
[9] |
D. Cao, K. Ramani and Z. Li, Guiding concept generation based on ontology for customer preference modeling, The Eighth International Symposium on Tools and Methods of Competitive Engineering, Italy, (2010), 1–14. |
[10] |
H. Garg, Handbook of research on artificial intelligence techniques and algorithms, Chapter A Hybrid GA-GSA Algorithm for Optimizing the Performance of An Industrial System by Utilizing Uncertain Data, (2015), 620–654. |
[11] |
H. Garg,
A hybrid PSO-GA algorithm for constrained optimization problems, Appl. Math. Comput., 274 (2016), 292-305.
doi: 10.1016/j.amc.2015.11.001. |
[12] |
H. Garg,
A hybrid GSA-GA algorithm for constrained optimization problems, Information Sciences, 478 (2019), 499-523.
|
[13] |
S. Grasso and D. Asioli,
Consumer preferences for upcycled ingredients: A case study with biscuits, Food Quality and Preference, 84 (2020), 1-9.
doi: 10.1016/j.foodqual.2020.103951. |
[14] |
Y. Gupta, M. Gupta, A. Kumar and C. Sundaram,
A genetic algorithm-based approach to cell composition and layout design problems, International J. Production Research, 34 (1996), 447-482.
doi: 10.1080/00207549608904913. |
[15] |
J. A. Howard and J. N. Sheth, The Theory of Buyer Behavior, John Wiley & Sons, Inc., New York, 1969. |
[16] |
J. Jouzdani, F. Barzinpour, M. A. Shafia and M. Fathian,
Applying simulated annealing to a generalized cell formation problem considering alternative routings and machine reliability, Asia-Pacific Journal of Operational Research, 31 (2014), 1-26.
doi: 10.1142/S0217595914500213. |
[17] |
R. Kamalakannan and R. S. Pandian,
A tabu search strategy to solve cell formation problem with ratio level data, International J. Enterprise Network Management, 13 (2018), 209-220.
doi: 10.1504/IJBIDM.2018.088431. |
[18] |
M. Kargar and P. Payvandy,
Optimization of fabric layout by using imperialist competitive algorithm, J. Textile and Polymer, 3 (2015), 55-63.
|
[19] |
A. H. Kashan, B. Karimi and A. Noktehdan,
A novel discrete particle swarm optimization algorithm for the manufacturing cell formation problem, International J. Advanced Manufacturing Technology, 73 (2014), 1543-1556.
|
[20] |
R. Kia, A. Baboli, N. Javadian, R. Tavakkoli-Moghaddam, M. Kazemi and J. Khorrami,
Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing, Comput. Oper. Res., 39 (2012), 2642-2658.
doi: 10.1016/j.cor.2012.01.012. |
[21] |
J. R. King and V. Nakornchai,
Machine-component group formation in group technology: Review and extension, International J. Production Research, 20 (1982), 117-133.
doi: 10.1080/00207548208947754. |
[22] |
M. Kuzmanovic and M. Martic,
An approach to competitive product line design using conjoint data, Expert Systems with Applications, 39 (2012), 7262-7269.
doi: 10.1016/j.eswa.2012.01.097. |
[23] |
M. Kuzmanovic, M. Martic and M. Vujosevic,
Designing a profit-maximizing product line for heterogeneous market, Technical Gazette, 26 (2019), 1562-1569.
|
[24] |
Y. Li, X. Li and J. N. D. Gupta,
Solving the multi-objective flowline manufacturing cell scheduling problem by hybrid harmony search, Expert Systems with Applications, 42 (2015), 1409-1417.
doi: 10.1016/j.eswa.2014.09.007. |
[25] |
C. Liu, J. Wang, J. Y.-T. Leung and K. Li,
Solving cell formation and task scheduling in cellular manufacturing system by discrete bacteria foraging algorithm, International J. Production Research, 54 (2016), 923-944.
doi: 10.1080/00207543.2015.1113328. |
[26] |
C. Liu, J. Wang and M. Zhou,
Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach, IEEE Transactions on Automation Science and Engineering, 16 (2019), 1301-1314.
doi: 10.1109/TASE.2018.2878653. |
[27] |
C. Liu and J. Wang,
Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing, International J. Computational Intelligence Systems, 9 (2016), 765-777.
doi: 10.1080/18756891.2016.1204123. |
[28] |
C. Liu, J. Wang and J. Y.-T. Leung, Worker assignment and production planning with learning and forgetting in manufacturing cells by hybrid bacteria foraging algorithm, Computers & Industrial Engineering, 96 (2016), 162–179.
doi: 10.1016/j.cie.2016.03.020. |
[29] |
C. Liu, J. Wang and J. Y.-T. Leung,
Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning, Applied Soft Computing, 62 (2018), 602-618.
doi: 10.1016/j.asoc.2017.10.034. |
[30] |
E. Mehdizadeh, S. V. D. Niaki and V. Rahimi, A vibration damping optimization algorithm for solving a new multi-objective dynamic cell formation problem with workers training, Computers & Industrial Engineering, 101 (2016), 35–52.
doi: 10.1016/j.cie.2016.08.012. |
[31] |
J. J. Michalek, O. Ceryan, P. Y. Papalambros and Y. Koren,
Balancing marketing and manufacturing objectives in product line design, J. Mech. Des., 128 (2006), 1196-1204.
doi: 10.1115/1.2336252. |
[32] |
J. J. Michalek, P. Ebbes, F. Adigzel, F. M. Feinberg and P. Y. Papalambros,
Enhancing marketing with engineering: Optimal product line design for heterogeneous markets, International J. Research in Marketing, 28 (2011), 1-12.
doi: 10.1016/j.ijresmar.2010.08.001. |
[33] |
S. M. Mousavi, R. Tavakkoli-Moghaddam, B. Vahdani, H. Hashemi and M. J. Sanjari,
A new support vector model-based imperialist competitive algorithm for time estimation in new product development projects, Robotics and Computer-Integrated Manufacturing, 29 (2013), 157-168.
doi: 10.1016/j.rcim.2012.04.006. |
[34] |
K. Nemati, S. M. Shamsuddin and M. S. Kamarposhti,
Using imperial competitive algorithm for solving traveling salesman problem and comparing the efficiency of the proposed algorithm with methods in use, Australian J. Basic and Applied Science, 5 (2011), 540-543.
|
[35] |
C. Y. Ng and K. M. Y. Law,
Investigating consumer preferences on product designs by analyzing opinions from social networks using evidential reasoning, Computers & Industrial Engineerin, 139 (2020), 1-11.
doi: 10.1016/j.cie.2019.106180. |
[36] |
F. Niakan, A. Baboli, T. Moyaux and V. Botta-Genoulaz,
A new multi-objective mathematical model for dynamic cell formation under demand and cost uncertainty considering social criteria, Appl. Math. Model., 40 (2016), 2674-2691.
doi: 10.1016/j.apm.2015.09.047. |
[37] |
S. W. Norton,
The coast theorem and suboptimization in marketing channels, Marketing Science, 6 (1987), 268-285.
|
[38] |
R. S. Patwal, N. Narang and H. Garg,
A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units, Energy, 142 (2018), 822-837.
|
[39] |
S. J. M. Rad, A. F. Tab and K. Mollazade,
Application of imperialist competitive algorithm for feature selection: A case study on bulk rice classification, Inter. J. Computer Appl., 40 (2012), 41-48.
|
[40] |
P. Tarasewich and R. R. McMullen,
A pruning heuristic for use with multisource product design, European J. Operational Research, 128 (2001), 58-73.
doi: 10.1016/S0377-2217(99)00350-1. |
[41] |
P. B. Tookanlou and H. Wong,
Determining the optimal customization levels, lead times and inventory positioning in vertical product differentiation, Inter. J. Production Economics, 221 (2020), 1-20.
doi: 10.1016/j.ijpe.2019.08.014. |
[42] |
P. B. Tookanlou and H. W. Wong,
Product line design with vertical and horizontal consumer heterogeneity: The effect of distribution channel structure on the optimal quality and customization levels, European J. Marketing, 55 (2020), 95-131.
|
[43] |
S. Tsafarakis, C. Saridakis, G. Baltas and N. Matsatsinis,
Hybrid particle swarm optimization with mutation for optimizing industrial product lines: An application to a mixed solution space considering both discrete and continuous design variables, Industrial Marketing Management, 42 (2013), 496-506.
doi: 10.1016/j.indmarman.2013.03.002. |
[44] |
S. Tsafarakis, K. Zervoudakis, A. Andronikidis and E. Altsitsiadis,
Fuzzy self-tuning differential evolution for optimal product line design, European J. Oper. Res., 287 (2020), 1161-1169.
doi: 10.1016/j.ejor.2020.05.018. |
[45] |
J. Wang, C. Liu and K. Li,
A hybrid simulated annealing for scheduling in dual-resource cellular manufacturing system considering worker movement, Automatika, 60 (2019), 172-180.
doi: 10.1080/00051144.2019.1603264. |
[46] |
J. Wang, C. Liu and M. Zhou,
Improved bacterial foraging algorithm for cell formation and product scheduling considering learning and forgetting factors in cellular manufacturing systems, IEEE Systems Journal, 14 (2020), 3047-3056.
doi: 10.1109/JSYST.2019.2963222. |
[47] |
M. Zandieh, A. R. Khatami and S. H. A. Rahmati,
Flexible job shop scheduling under condition-based maintenance: Improved version of imperialist competitive algorithm, Applied Soft Computing, 58 (2017), 449-464.
|
[48] |
S. Zhang, J. Zhang, J. Shen and W. Tang,
A joint dynamic pricing and production model with asymmetric reference price effect, J. Ind. Manag. Optim., 15 (2019), 667-688.
doi: 10.3934/jimo.2018064. |
[49] |
Z. Zhao, Study on Multi-Strategy Dynamic Scheduling Optimization Algorithm in Rotating Seru System, Master's Thesis, Dongbei University of Finance and Economics, Dalian, China, 2017. |
[50] |
A. M. Zohrevand, H. Rafiei and A. H. Zohrevand,
Multi-objective dynamic cell formation problem: A stochastic programming approach, Computers & Industrial Engineering, 98 (2016), 323-332.
|






Authors | Cell formation | Consumer preference | Product line design | Solution method |
Gupta et al. [14] | $\surd$ | - | - | GAs |
Kashan et al. [19] | $\surd$ | - | - | GBPSO |
Kamalakannan and Pandian [17] | - | - | TS, MGE | |
Bagheri and Bashiri [6] | - | - | GICA | |
Zohrevand et al. [50] | - | - | TS-GA | |
Jouzdani et al. [16] | - | - | SA | |
Li et al. [24] | - | - | HHS | |
Liu et al. [25] | - | - | DBFA | |
Zhao [49] | - | - | Memetic Algorithm | |
Mehdizadeh et al. [30] | - | - | MOVDO | |
Bootaki et al. [8] | - | - | GA-AUGMECON | |
Niakan et al. [36] | - | - | NSGA-II | |
Liu et al. [26] | - | - | DICAP | |
Howard and Sheth [15] | - | - | Buyer Behavior Theory | |
Norton [37] | - | - | Coase Theorem | |
Cao et al. [9] | - | - | Ontology-based | |
Ng and Law [35] | - | Fuzzy-ER | ||
Achabou et al. [2] | - | - | Conjoint Analysis, Cluster Analysis | |
Agnew and Dargusch [3] | - | BWS, DCE | ||
Grasso and Asioli[13] | - | DCMs | ||
Michalek et al. [32] | - | Conjoint Analysis | ||
Tookanlou and Wong [42] | - | Empirical Studies | ||
Tsafarakis et al. [43,44] | - | Hybrid PSO, FSTDE | ||
Kuzmanovic et al. [23] | - | Conjoint Analysis | ||
This paper | RICA |
Authors | Cell formation | Consumer preference | Product line design | Solution method |
Gupta et al. [14] | $\surd$ | - | - | GAs |
Kashan et al. [19] | $\surd$ | - | - | GBPSO |
Kamalakannan and Pandian [17] | - | - | TS, MGE | |
Bagheri and Bashiri [6] | - | - | GICA | |
Zohrevand et al. [50] | - | - | TS-GA | |
Jouzdani et al. [16] | - | - | SA | |
Li et al. [24] | - | - | HHS | |
Liu et al. [25] | - | - | DBFA | |
Zhao [49] | - | - | Memetic Algorithm | |
Mehdizadeh et al. [30] | - | - | MOVDO | |
Bootaki et al. [8] | - | - | GA-AUGMECON | |
Niakan et al. [36] | - | - | NSGA-II | |
Liu et al. [26] | - | - | DICAP | |
Howard and Sheth [15] | - | - | Buyer Behavior Theory | |
Norton [37] | - | - | Coase Theorem | |
Cao et al. [9] | - | - | Ontology-based | |
Ng and Law [35] | - | Fuzzy-ER | ||
Achabou et al. [2] | - | - | Conjoint Analysis, Cluster Analysis | |
Agnew and Dargusch [3] | - | BWS, DCE | ||
Grasso and Asioli[13] | - | DCMs | ||
Michalek et al. [32] | - | Conjoint Analysis | ||
Tookanlou and Wong [42] | - | Empirical Studies | ||
Tsafarakis et al. [43,44] | - | Hybrid PSO, FSTDE | ||
Kuzmanovic et al. [23] | - | Conjoint Analysis | ||
This paper | RICA |
Component | Attribute | Level |
Component 1 | Thickness | Thin, thick, superthick |
The shape of the support | Cylindrical, spherical, oval | |
Glass shape | Square, circular, rhombic | |
Component 2 | Color | Blue, gray, green |
Light transmission | Transparent, translucent, opaque | |
Thermal insulation | General, great, excellent | |
Edge banding material | Metallic, plastic, rubber | |
Component 3 | Decoration | Retro, fashion, chinoiserie |
Welding of metallic layer | Metal brazing, gastight welding, laser welding |
Component | Attribute | Level |
Component 1 | Thickness | Thin, thick, superthick |
The shape of the support | Cylindrical, spherical, oval | |
Glass shape | Square, circular, rhombic | |
Component 2 | Color | Blue, gray, green |
Light transmission | Transparent, translucent, opaque | |
Thermal insulation | General, great, excellent | |
Edge banding material | Metallic, plastic, rubber | |
Component 3 | Decoration | Retro, fashion, chinoiserie |
Welding of metallic layer | Metal brazing, gastight welding, laser welding |
Attribute1 (A1) | Attribute 2 (A2) | Attribute 3(A3) | |||||||
Level11 (L11) |
Level12 (L12) |
Level13 (L13) |
Level21 (L21) |
Level22 (L22) |
Level23 (L23) |
Level31 (L31) |
Level32 (L32) |
Level33 (L33) |
|
Individual 1 |
2 (0.20) |
3 (0.30) |
5 (0.50) |
1 (0.13) |
4 (0.50) |
3 (0.38) |
2 (0.18) |
5 (0.45) |
4 (0.36) |
Individual 2 |
2 (0.33) |
3 (0.50) |
1 (0.17) |
3 (0.33) |
4 (0.44) |
2 (0.22) |
3 (0.30) |
4 (0.40) |
3 (0.30) |
Individual 3 |
4 (0.36) |
2 (0.18) |
5 (0.45) |
4 (0.44) |
3 (0.33) |
2 (0.22) |
5 (0.56) |
1 (0.11) |
3 (0.33) |
Attribute1 (A1) | Attribute 2 (A2) | Attribute 3(A3) | |||||||
Level11 (L11) |
Level12 (L12) |
Level13 (L13) |
Level21 (L21) |
Level22 (L22) |
Level23 (L23) |
Level31 (L31) |
Level32 (L32) |
Level33 (L33) |
|
Individual 1 |
2 (0.20) |
3 (0.30) |
5 (0.50) |
1 (0.13) |
4 (0.50) |
3 (0.38) |
2 (0.18) |
5 (0.45) |
4 (0.36) |
Individual 2 |
2 (0.33) |
3 (0.50) |
1 (0.17) |
3 (0.33) |
4 (0.44) |
2 (0.22) |
3 (0.30) |
4 (0.40) |
3 (0.30) |
Individual 3 |
4 (0.36) |
2 (0.18) |
5 (0.45) |
4 (0.44) |
3 (0.33) |
2 (0.22) |
5 (0.56) |
1 (0.11) |
3 (0.33) |
A1 | A2 | A3 | Individual 1 | Individual 2 | Individual 3 | ||
Product 1 | L13 | L23 | L31 | 1.06 | 0.69 | 1.23 | |
Competitive product 1 | L12 | L22 | L33 | 1.16 | 1.24 | 0.84 | |
Competitive product 2 | L11 | L23 | L32 | 1.03 | 0.95 | 0.69 | |
Competitive product 3 | L13 | L22 | L31 | 1.18 | 0.91 | 1.34 | |
Probability PROBi1 | 0.24 | 0.19 | 0.30 | ||||
Demand D1 (S=300) |
73 |
A1 | A2 | A3 | Individual 1 | Individual 2 | Individual 3 | ||
Product 1 | L13 | L23 | L31 | 1.06 | 0.69 | 1.23 | |
Competitive product 1 | L12 | L22 | L33 | 1.16 | 1.24 | 0.84 | |
Competitive product 2 | L11 | L23 | L32 | 1.03 | 0.95 | 0.69 | |
Competitive product 3 | L13 | L22 | L31 | 1.18 | 0.91 | 1.34 | |
Probability PROBi1 | 0.24 | 0.19 | 0.30 | ||||
Demand D1 (S=300) |
73 |
Control parameters | Levels |
40, 50, 60 | |
8, 10, 12 | |
0.1, 0.2, 0.3 | |
0.6, 0.7, 0.8 | |
10, 12, 15 | |
0.0001, 0.0005, 0,001 |
Control parameters | Levels |
40, 50, 60 | |
8, 10, 12 | |
0.1, 0.2, 0.3 | |
0.6, 0.7, 0.8 | |
10, 12, 15 | |
0.0001, 0.0005, 0,001 |
Parameter | Value | Min | Max |
3 | |||
3 | |||
9 | |||
3 | |||
8 | |||
5 | |||
100 | |||
1000 | |||
3 | |||
10 | 20 | ||
1 | 3 | ||
1 | 2 | ||
25 | 40 | ||
2 | 5 | ||
3 | 8 | ||
1 | 5 |
Parameter | Value | Min | Max |
3 | |||
3 | |||
9 | |||
3 | |||
8 | |||
5 | |||
100 | |||
1000 | |||
3 | |||
10 | 20 | ||
1 | 3 | ||
1 | 2 | ||
25 | 40 | ||
2 | 5 | ||
3 | 8 | ||
1 | 5 |
$C=6, A=5, L=5$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$M$ | 6 | 398720 | 335469 | 322124 | 19 | 24 | 130 |
12 | 607478 | 517620 | 489546 | 17 | 24 | 203 | |
18 | 797091 | 673714 | 657481 | 18 | 21 | 353 | |
24 | 1010046 | 860332 | 819408 | 17 | 23 | 519 | |
$M=14, C=5, L=5$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$A$ | 3 | 1371713 | 1201124 | 1156277 | 14 | 19 | 308 |
6 | 1000975 | 863354 | 829463 | 16 | 21 | 344 | |
9 | 963418 | 837029 | 796480 | 15 | 21 | 433 | |
12 | 978119 | 831539 | 791116 | 18 | 24 | 593 | |
$M=12, C=5, A=10$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$L$ | 3 | 459945 | 402027 | 388192 | 14 | 18 | 176 |
10 | 916115 | 788887 | 741580 | 16 | 24 | 283 | |
17 | 1343335 | 1154694 | 1104538 | 16 | 22 | 418 | |
24 | 1601637 | 1344834 | 1285988 | 19 | 25 | 819 | |
$M=17, A=7, L=3$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$C$ | 3 | 1304929 | 1156539 | 1111787 | 13 | 17 | 294 |
18 | 1427445 | 1198392 | 1155033 | 19 | 24 | 541 | |
13 | 1403110 | 1178416 | 1137835 | 19 | 23 | 813 | |
18 | 1421519 | 1222470 | 1173408 | 16 | 21 | 801 |
$C=6, A=5, L=5$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$M$ | 6 | 398720 | 335469 | 322124 | 19 | 24 | 130 |
12 | 607478 | 517620 | 489546 | 17 | 24 | 203 | |
18 | 797091 | 673714 | 657481 | 18 | 21 | 353 | |
24 | 1010046 | 860332 | 819408 | 17 | 23 | 519 | |
$M=14, C=5, L=5$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$A$ | 3 | 1371713 | 1201124 | 1156277 | 14 | 19 | 308 |
6 | 1000975 | 863354 | 829463 | 16 | 21 | 344 | |
9 | 963418 | 837029 | 796480 | 15 | 21 | 433 | |
12 | 978119 | 831539 | 791116 | 18 | 24 | 593 | |
$M=12, C=5, A=10$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$L$ | 3 | 459945 | 402027 | 388192 | 14 | 18 | 176 |
10 | 916115 | 788887 | 741580 | 16 | 24 | 283 | |
17 | 1343335 | 1154694 | 1104538 | 16 | 22 | 418 | |
24 | 1601637 | 1344834 | 1285988 | 19 | 25 | 819 | |
$M=17, A=7, L=3$ | $\mathop {\bar V}\nolimits_{RICA} $ | $\mathop {\bar V}\nolimits_{ICASA} $ | $\mathop {\bar V}\nolimits_{GA} $ | $\mathop {\Delta \bar V}\nolimits_{ICASA}^{RICA} (\%)$ | $\mathop {\Delta \bar V}\nolimits_{GA}^{RICA} (\%)$ | $CPU$ (s) | |
$C$ | 3 | 1304929 | 1156539 | 1111787 | 13 | 17 | 294 |
18 | 1427445 | 1198392 | 1155033 | 19 | 24 | 541 | |
13 | 1403110 | 1178416 | 1137835 | 19 | 23 | 813 | |
18 | 1421519 | 1222470 | 1173408 | 16 | 21 | 801 |
[1] |
Zhi-tang Li, Cui-hua Zhang, Wei Kong, Ru-xia Lyu. The optimal product-line design and incentive mechanism in a supply chain with customer environmental awareness. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021204 |
[2] |
Xiaoxi Zhu, Kai Liu, Miaomiao Wang, Rui Zhang, Minglun Ren. Product line extension with a green added product: Impacts of segmented consumer preference on supply chain improvement and consumer surplus. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022021 |
[3] |
Kai Li, Yan Li, Jing Liu, Nenggui Zhao. Two-sided vertical competition considering product quality in a manufacturing-remanufacturing system. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021187 |
[4] |
Omer Faruk Yilmaz, Mehmet Bulent Durmusoglu. A performance comparison and evaluation of metaheuristics for a batch scheduling problem in a multi-hybrid cell manufacturing system with skilled workforce assignment. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1219-1249. doi: 10.3934/jimo.2018007 |
[5] |
Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial and Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251 |
[6] |
Chun-xiang Guo, Dong Cai, Yu-yang Tan. Outsourcing contract design for the green transformation of manufacturing systems under asymmetric information. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021158 |
[7] |
Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems and Imaging, 2014, 8 (2) : 389-408. doi: 10.3934/ipi.2014.8.389 |
[8] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[9] |
Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial and Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907 |
[10] |
Xuemei Zhang, Malin Song, Guangdong Liu. Service product pricing strategies based on time-sensitive customer choice behavior. Journal of Industrial and Management Optimization, 2017, 13 (1) : 297-312. doi: 10.3934/jimo.2016018 |
[11] |
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235 |
[12] |
Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1219-1235. doi: 10.3934/mbe.2015.12.1219 |
[13] |
Ting Zhang, Shuhua Chang, Yan Dong, Jingyi Yue, Kok Lay Teo. Competitive strategies in the presence of consumers' expected service and product returns. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021108 |
[14] |
Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185 |
[15] |
Xiujing Dang, Yang Xu, Gongbing Bi, Lei Qin. Pricing strategy and product quality design with platform-investment. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021224 |
[16] |
Shuai Zhang, L.R. Ritter, A.I. Ibragimov. Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport. Conference Publications, 2013, 2013 (special) : 825-835. doi: 10.3934/proc.2013.2013.825 |
[17] |
Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056 |
[18] |
Jean-Michel Coron, Matthias Kawski, Zhiqiang Wang. Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1337-1359. doi: 10.3934/dcdsb.2010.14.1337 |
[19] |
Nguyen Thi Bach Kim. Finite algorithm for minimizing the product of two linear functions over a polyhedron. Journal of Industrial and Management Optimization, 2007, 3 (3) : 481-487. doi: 10.3934/jimo.2007.3.481 |
[20] |
Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]