We obtain the improved results of the upper and lower bounds for the spectral radius of a nonnegative tensor by its majorization matrix's digraph. Numerical examples are also given to show that our results are significantly superior to the results of related literature.
Citation: |
[1] |
K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.
doi: 10.4310/CMS.2008.v6.n2.a12.![]() ![]() ![]() |
[2] |
S. Friedland, S. Gaubert and L. Han, Peerron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738-749.
doi: 10.1016/j.laa.2011.02.042.![]() ![]() ![]() |
[3] |
J. He and T. Huang, Upper bound for the lagest z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012.![]() ![]() ![]() |
[4] |
S. L. Hu, Z. H. Huang, C. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50 (2013), 508-531.
doi: 10.1016/j.jsc.2012.10.001.![]() ![]() ![]() |
[5] |
L. H. Lim, Singular values and eigenvalues of tensors: A Variational approach, CAMSAP '05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, (2005), 129–132.
![]() |
[6] |
C. Li, Y. Wang, J. Yi and Y. Li, Bounds for the spectral radius of nonnegative tensor, J. Ind. Manag. Optim., 12 (2016), 975-990.
doi: 10.3934/jimo.2016.12.975.![]() ![]() ![]() |
[7] |
L. Li and C. Li, New bounds for the spectral radius for nonnegative tensors, J. Inequal. Appl., 166 (2015), 1-9.
doi: 10.1186/s13660-015-0689-1.![]() ![]() ![]() |
[8] |
W. Li and M. Ng, Some bounds for the spectral radius of nonnegative tensors, Numer. Math., 130 (2015), 315-335.
doi: 10.1007/s00211-014-0666-5.![]() ![]() ![]() |
[9] |
M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl, 31 (2009), 1090-1099.
doi: 10.1137/09074838X.![]() ![]() ![]() |
[10] |
K. J. Pearson, Essentially positive tensors, Int. J. Algebra, 4 (2010), 421-427.
![]() ![]() |
[11] |
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.![]() ![]() ![]() |
[12] |
L. Qi, W. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.
doi: 10.1007/s11464-007-0031-4.![]() ![]() ![]() |
[13] |
L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), 1363-1377.
doi: 10.1016/j.jmaa.2006.02.071.![]() ![]() ![]() |
[14] |
L. Qi, Y. Wang and E. Wu, D-eigenvalues of diffusion kurtosis tensors, J. Comput. Appl. Math., 221 (2008), 150-157.
doi: 10.1016/j.cam.2007.10.012.![]() ![]() ![]() |
[15] |
A. Roger and R. Charles, Matrix Analysis, The People's Posts and Telecommunications Press, 2007.
![]() |
[16] |
T. Schultz and H. Seidel, Estimating crossing fibers: A tensor decomposition approach, IEEE Transactions on Visualization and Computer Graphics, 14 (2008), 1635-1642.
doi: 10.1109/TVCG.2008.128.![]() ![]() |
[17] |
Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633.![]() ![]() ![]() |
[18] |
Y. Yang and Q. Yang, Further results for perron-frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530.
doi: 10.1137/090778766.![]() ![]() ![]() |