• Previous Article
    A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints
  • JIMO Home
  • This Issue
  • Next Article
    A production inventory model for high-tech products involving two production runs and a product variation
doi: 10.3934/jimo.2021193
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Zinc ore supplier evaluation and recommendation method based on nonlinear adaptive online transfer learning

932 Lushan South Road, Yuelu District, Changsha, Hunan Province, China

* Corresponding author: Yonggang Li

Received  March 2021 Revised  August 2021 Early access November 2021

Fund Project: The first author is supported by NNSFC grant 61973321

Purchasing decisions determine the purchasing cost, which is the largest section of the production cost of zinc smelting enterprise(ZSE). An excellent supplier recommendation is significant for ZSE to reduce the cost. However, during the supplier recommendation process, the nonlinear demand feature of purchasing department varies with the production environment, and there are wrong samples that can affect the supplier recommendation effect. To handle these problems, the recommendation strategy based on a multiple-layer perceptron adaptive online transfer learning algorithm(AOTLMLP) are proposed. In this method, the original prediction function is modified based on MLP nonlinear projective function and adaptive loss function, which enables the AOTLMLP algorithm to tackle the nonlinear classification problems and efficiently follow the demand change of purchasing department, thereby improving the result of the recommendation. The performance of the AOTLMO algorithm is evaluated through a common dataset and a purchasing dataset from a zinc smelter that generated by a supplier evaluation model. It can be assumed that AOTLMLP can ignore the influence of wrong samples and provide an effective recommendation confronting the characteristic of zinc ore purchasing.

Citation: Yudong Li, Yonggang Li, Bei Sun, Yu Chen. Zinc ore supplier evaluation and recommendation method based on nonlinear adaptive online transfer learning. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021193
References:
[1]

G. Akman, Evaluating suppliers to include green supplier development programs via fuzzy c-means and vikor methods, Computers & Industrial Engineering, 86 (2015), 69-82.  doi: 10.1016/j.cie.2014.10.013.

[2]

M. Balabanović and Y. Shoham, Fab: Content-based, collaborative recommendation, Communications of the ACM, 40 (1997), 66-72.  doi: 10.1145/245108.245124.

[3]

Z. ChenY. Jiang and Y. Zhao, A collaborative filtering recommendation algorithm based on user interest change and trust evaluation, International Journal of Digital Content Technology and its Applications, 4 (2010), 106-113. 

[4]

J. Cheng, Y. Liu, H. Zhang, X. Wu and F. Chen, A new recommendation algorithm based on user's dynamic information in complex social network, Mathematical Problems in Engineering, 2015 (2015), Article ID 281629. doi: 10.1155/2015/281629.

[5]

G. DitzlerM. RoveriC. Alippi and R. Polikar, Learning in nonstationary environments: A survey, IEEE Computational Intelligence Magazine, 10 (2015), 12-25.  doi: 10.1109/MCI.2015.2471196.

[6]

M. M. GaberA. Zaslavsky and S. Krishnaswamy, Mining data streams: A review, ACM Sigmod Record, 34 (2005), 18-26.  doi: 10.1145/1083784.1083789.

[7]

J. GamaI. ŽliobaitėA. BifetM. Pechenizkiy and A. Bouchachia, A survey on concept drift adaptation, ACM Computing Surveys (CSUR), 46 (2014), 1-37.  doi: 10.1145/2523813.

[8]

I. GasmiH. Seridi-BouchelaghemL. Hocine and B. Abdelkarim, Collaborative filtering recommendation based on dynamic changes of user interest, Intelligent Decision Technologies, 9 (2015), 271-281.  doi: 10.3233/IDT-140221.

[9]

T. GrubingerG. C. Chasparis and T. Natschläger, Generalized online transfer learning for climate control in residential buildings, Energy and Buildings, 139 (2017), 63-71.  doi: 10.1016/j.enbuild.2016.12.074.

[10]

S. C. Hoi, D. Sahoo, J. Lu and P. Zhao, Online learning: A comprehensive survey, arXiv preprint, arXiv: 1802.02871.

[11]

B.-J. Hou, L. Zhang and Z.-H. Zhou, Prediction with unpredictable feature evolution, IEEE Transactions on Neural Networks and Learning Systems.

[12]

J. Jorge and R. Paredes, Passive-aggressive online learning with nonlinear embeddings, Pattern Recognition, 79 (2018), 162-171.  doi: 10.1016/j.patcog.2018.01.019.

[13]

Z. KangB. YangZ. Li and P. Wang, Otlamc: An online transfer learning algorithm for multi-class classification, Knowledge-Based Systems, 176 (2019), 133-146.  doi: 10.1016/j.knosys.2019.03.024.

[14]

J.-J. Kuo and Y.-J. Zhang, A library recommender system using interest change over time and matrix clustering, in International Conference on Asian Digital Libraries, Springer, 2012,259–268. doi: 10.1007/978-3-642-34752-8_32.

[15]

K. Lang, Newsweeder: Learning to filter netnews, in Machine Learning Proceedings 1995, 1995, 331–339. doi: 10.1016/B978-1-55860-377-6.50048-7.

[16]

J. Li, W. Qiu and W. Li, An improved k-means algorithm for supplier evaluation and recommendation of purchase and supply platform, in Journal of Physics: Conference Series, vol. 1650 (2020), 032165. doi: 10.1088/1742-6596/1650/3/032165.

[17]

Y.-H. Lin and L. Chang, An online transfer learning framework for time-varying distribution data prediction.,

[18]

S. LuthraK. GovindanD. KannanS. K. Mangla and C. P. Garg, An integrated framework for sustainable supplier selection and evaluation in supply chains, Journal of Cleaner Production, 140 (2017), 1686-1698.  doi: 10.1016/j.jclepro.2016.09.078.

[19]

C. Lv, Y. Lu, X. Yan, W. Lu and H. Tan, Supplier recommendation based on knowledge graph embedding, in 2020 Management Science Informatization and Economic Innovation Development Conference (MSIEID), IEEE, 2020,514–518. doi: 10.1109/MSIEID52046.2020.00105.

[20]

A. Niyazov, E. Mikhailova and O. Egorova, Content-based music recommendation system, in 2021 29th Conference of Open Innovations Association (FRUCT), IEEE, 2021,274–279. doi: 10.23919/FRUCT52173.2021.9435533.

[21]

R. W. Saaty, The analytic hierarchy process-what it is and how it is used, Mathematical Modelling, 9 (1987), 161-176.  doi: 10.1016/0270-0255(87)90473-8.

[22]

U. Thakker, R. Patel and M. Shah, A comprehensive analysis on movie recommendation system employing collaborative filtering, Multimedia Tools and Applications, 1–26.

[23]

Q. WuX. ZhouY. YanH. Wu and H. Min, Online transfer learning by leveraging multiple source domains, Knowledge and Information Systems, 52 (2017), 687-707.  doi: 10.1007/s10115-016-1021-1.

[24]

P. ZhaoS. C. H. HoiJ. Wang and B. Li, Online transfer learning, Artificial Intelligence, 216 (2014), 76-102.  doi: 10.1016/j.artint.2014.06.003.

[25]

I. Žliobaitė, Learning under concept drift: An overview, arXiv preprint, arXiv: 1010.4784.

show all references

References:
[1]

G. Akman, Evaluating suppliers to include green supplier development programs via fuzzy c-means and vikor methods, Computers & Industrial Engineering, 86 (2015), 69-82.  doi: 10.1016/j.cie.2014.10.013.

[2]

M. Balabanović and Y. Shoham, Fab: Content-based, collaborative recommendation, Communications of the ACM, 40 (1997), 66-72.  doi: 10.1145/245108.245124.

[3]

Z. ChenY. Jiang and Y. Zhao, A collaborative filtering recommendation algorithm based on user interest change and trust evaluation, International Journal of Digital Content Technology and its Applications, 4 (2010), 106-113. 

[4]

J. Cheng, Y. Liu, H. Zhang, X. Wu and F. Chen, A new recommendation algorithm based on user's dynamic information in complex social network, Mathematical Problems in Engineering, 2015 (2015), Article ID 281629. doi: 10.1155/2015/281629.

[5]

G. DitzlerM. RoveriC. Alippi and R. Polikar, Learning in nonstationary environments: A survey, IEEE Computational Intelligence Magazine, 10 (2015), 12-25.  doi: 10.1109/MCI.2015.2471196.

[6]

M. M. GaberA. Zaslavsky and S. Krishnaswamy, Mining data streams: A review, ACM Sigmod Record, 34 (2005), 18-26.  doi: 10.1145/1083784.1083789.

[7]

J. GamaI. ŽliobaitėA. BifetM. Pechenizkiy and A. Bouchachia, A survey on concept drift adaptation, ACM Computing Surveys (CSUR), 46 (2014), 1-37.  doi: 10.1145/2523813.

[8]

I. GasmiH. Seridi-BouchelaghemL. Hocine and B. Abdelkarim, Collaborative filtering recommendation based on dynamic changes of user interest, Intelligent Decision Technologies, 9 (2015), 271-281.  doi: 10.3233/IDT-140221.

[9]

T. GrubingerG. C. Chasparis and T. Natschläger, Generalized online transfer learning for climate control in residential buildings, Energy and Buildings, 139 (2017), 63-71.  doi: 10.1016/j.enbuild.2016.12.074.

[10]

S. C. Hoi, D. Sahoo, J. Lu and P. Zhao, Online learning: A comprehensive survey, arXiv preprint, arXiv: 1802.02871.

[11]

B.-J. Hou, L. Zhang and Z.-H. Zhou, Prediction with unpredictable feature evolution, IEEE Transactions on Neural Networks and Learning Systems.

[12]

J. Jorge and R. Paredes, Passive-aggressive online learning with nonlinear embeddings, Pattern Recognition, 79 (2018), 162-171.  doi: 10.1016/j.patcog.2018.01.019.

[13]

Z. KangB. YangZ. Li and P. Wang, Otlamc: An online transfer learning algorithm for multi-class classification, Knowledge-Based Systems, 176 (2019), 133-146.  doi: 10.1016/j.knosys.2019.03.024.

[14]

J.-J. Kuo and Y.-J. Zhang, A library recommender system using interest change over time and matrix clustering, in International Conference on Asian Digital Libraries, Springer, 2012,259–268. doi: 10.1007/978-3-642-34752-8_32.

[15]

K. Lang, Newsweeder: Learning to filter netnews, in Machine Learning Proceedings 1995, 1995, 331–339. doi: 10.1016/B978-1-55860-377-6.50048-7.

[16]

J. Li, W. Qiu and W. Li, An improved k-means algorithm for supplier evaluation and recommendation of purchase and supply platform, in Journal of Physics: Conference Series, vol. 1650 (2020), 032165. doi: 10.1088/1742-6596/1650/3/032165.

[17]

Y.-H. Lin and L. Chang, An online transfer learning framework for time-varying distribution data prediction.,

[18]

S. LuthraK. GovindanD. KannanS. K. Mangla and C. P. Garg, An integrated framework for sustainable supplier selection and evaluation in supply chains, Journal of Cleaner Production, 140 (2017), 1686-1698.  doi: 10.1016/j.jclepro.2016.09.078.

[19]

C. Lv, Y. Lu, X. Yan, W. Lu and H. Tan, Supplier recommendation based on knowledge graph embedding, in 2020 Management Science Informatization and Economic Innovation Development Conference (MSIEID), IEEE, 2020,514–518. doi: 10.1109/MSIEID52046.2020.00105.

[20]

A. Niyazov, E. Mikhailova and O. Egorova, Content-based music recommendation system, in 2021 29th Conference of Open Innovations Association (FRUCT), IEEE, 2021,274–279. doi: 10.23919/FRUCT52173.2021.9435533.

[21]

R. W. Saaty, The analytic hierarchy process-what it is and how it is used, Mathematical Modelling, 9 (1987), 161-176.  doi: 10.1016/0270-0255(87)90473-8.

[22]

U. Thakker, R. Patel and M. Shah, A comprehensive analysis on movie recommendation system employing collaborative filtering, Multimedia Tools and Applications, 1–26.

[23]

Q. WuX. ZhouY. YanH. Wu and H. Min, Online transfer learning by leveraging multiple source domains, Knowledge and Information Systems, 52 (2017), 687-707.  doi: 10.1007/s10115-016-1021-1.

[24]

P. ZhaoS. C. H. HoiJ. Wang and B. Li, Online transfer learning, Artificial Intelligence, 216 (2014), 76-102.  doi: 10.1016/j.artint.2014.06.003.

[25]

I. Žliobaitė, Learning under concept drift: An overview, arXiv preprint, arXiv: 1010.4784.

Figure 1.  The framework of evaluation criterias for zinc ore suppliers
Figure 2.  The requirement change problem in supplier recommendation
Figure 3.  The structure of nonlinear prediction function based on MLP
Figure 4.  The update steps of algorithm
Figure 5.  Cumulative trainning error rate for different $ \beta $, considering IMAGE dataset
Figure 6.  Cumulative trainning error rate for different $ \beta $, considering Purchasing dataset
Figure 7.  Cumulative trainning error rate for different layer parameter, considering IMAGE dataset
Figure 8.  Cumulative trainning error rate for different layer parameter, considering Purchasing dataset
Figure 9.  Cumulative trainning error rate for different $ \eta $, considering training purchasing dataset
Figure 10.  Cumulative trainning error rate for different $ \eta $, considering testing purchasing dataset
Figure 11.  Recommendation accuracy for different $ \eta $, for purchasing demand change
Figure 12.  Cumulative trainning error rate for different $ \varphi $, considering training purchasing dataset
Figure 13.  Cumulative trainning error rate for different $ \varphi $, considering testing purchasing dataset
Figure 14.  Recommendation accuracy for different $ \varphi $, for purchasing demand change
Figure 15.  The convergence behaviors for different learning strategy, considering purchasing dataset
Figure 16.  The performance of four algorithms, considering purchasing demand change
Table 1.  Symbol reference table
Symbol Paraphrase
$ {{\bf{x}}_t} $ Supplier feature vector
$ {y_t} $ Recommendation outcome
$ {\bf{v}} $ Linear previous demand feature vector
$ {{\bf{w}}_t} $ Linear present demand feature vector(time-varying)
$ {{\bf{v}}_\phi } $ Nonlinear previous demand feature matrix
$ {{\bf{w}}_{\phi t}} $ Nonlinear present demand feature matrix(time-varying)
$ {{\bf{z}}_t} $ The hidden layer node vector(time-varying)
$ {{\bf{z}}_{(j)t}} $ The jth hidden layer node vector(time-varying)
$ {{\bf{r}}_t} $ The weight vector for ReLU units(time-varying)
$ {{\bf{r}}_{(j)t}} $ The jth layer weight vector for ReLU units(time-varying)
$ \beta $ The restriction parameter
$ \varphi $ The preference parameter
$ \eta $ The transfer speed rate
Symbol Paraphrase
$ {{\bf{x}}_t} $ Supplier feature vector
$ {y_t} $ Recommendation outcome
$ {\bf{v}} $ Linear previous demand feature vector
$ {{\bf{w}}_t} $ Linear present demand feature vector(time-varying)
$ {{\bf{v}}_\phi } $ Nonlinear previous demand feature matrix
$ {{\bf{w}}_{\phi t}} $ Nonlinear present demand feature matrix(time-varying)
$ {{\bf{z}}_t} $ The hidden layer node vector(time-varying)
$ {{\bf{z}}_{(j)t}} $ The jth hidden layer node vector(time-varying)
$ {{\bf{r}}_t} $ The weight vector for ReLU units(time-varying)
$ {{\bf{r}}_{(j)t}} $ The jth layer weight vector for ReLU units(time-varying)
$ \beta $ The restriction parameter
$ \varphi $ The preference parameter
$ \eta $ The transfer speed rate
[1]

Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134

[2]

Ana F. Carazo, Ignacio Contreras, Trinidad Gómez, Fátima Pérez. A project portfolio selection problem in a group decision-making context. Journal of Industrial and Management Optimization, 2012, 8 (1) : 243-261. doi: 10.3934/jimo.2012.8.243

[3]

Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1501-1519. doi: 10.3934/jimo.2018018

[4]

Xue Yan, Heap-Yih Chong, Jing Zhou, Zhaohan Sheng, Feng Xu. Fairness preference based decision-making model for concession period in PPP projects. Journal of Industrial and Management Optimization, 2020, 16 (1) : 11-23. doi: 10.3934/jimo.2018137

[5]

Jian Jin, Weijian Mi. An AIMMS-based decision-making model for optimizing the intelligent stowage of export containers in a single bay. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1101-1115. doi: 10.3934/dcdss.2019076

[6]

Sunil Kumar, Saikat Ranjan Maity, Lokeswar Patnaik. A novel BWM integrated MABAC decision-making approach to optimize the wear parameter of CrN/TiAlSiN coating. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022061

[7]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[8]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1161-1183. doi: 10.3934/jimo.2021014

[9]

G.S. Liu, J.Z. Zhang. Decision making of transportation plan, a bilevel transportation problem approach. Journal of Industrial and Management Optimization, 2005, 1 (3) : 305-314. doi: 10.3934/jimo.2005.1.305

[10]

Naziya Parveen, Prakash N. Kamble. An extension of TOPSIS for group decision making in intuitionistic fuzzy environment. Mathematical Foundations of Computing, 2021, 4 (1) : 61-71. doi: 10.3934/mfc.2021002

[11]

Ruiyue Lin, Zhiping Chen, Zongxin Li. A new approach for allocating fixed costs among decision making units. Journal of Industrial and Management Optimization, 2016, 12 (1) : 211-228. doi: 10.3934/jimo.2016.12.211

[12]

Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747

[13]

Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial and Management Optimization, 2020, 16 (2) : 633-651. doi: 10.3934/jimo.2018171

[14]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[15]

Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie. Evaluation strategy and mass balance for making decision about the amount of aluminum fluoride addition based on superheat degree. Journal of Industrial and Management Optimization, 2020, 16 (2) : 601-622. doi: 10.3934/jimo.2018169

[16]

Gleb Beliakov. Construction of aggregation operators for automated decision making via optimal interpolation and global optimization. Journal of Industrial and Management Optimization, 2007, 3 (2) : 193-208. doi: 10.3934/jimo.2007.3.193

[17]

Muhammad Qiyas, Saleem Abdullah, Shahzaib Ashraf, Saifullah Khan, Aziz Khan. Triangular picture fuzzy linguistic induced ordered weighted aggregation operators and its application on decision making problems. Mathematical Foundations of Computing, 2019, 2 (3) : 183-201. doi: 10.3934/mfc.2019013

[18]

Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial and Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041

[19]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial and Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[20]

Haiying Liu, Wenjie Bi, Kok Lay Teo, Naxing Liu. Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming. Journal of Industrial and Management Optimization, 2019, 15 (2) : 445-464. doi: 10.3934/jimo.2018050

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]