doi: 10.3934/jimo.2021204
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The optimal product-line design and incentive mechanism in a supply chain with customer environmental awareness

School of Business Administration, Northeastern University, Shenyang, China

* Corresponding author: Cui-hua Zhang

Received  April 2021 Revised  October 2021 Early access November 2021

Fund Project: The first author is supported by National Natural Science Foundation of China(NSFC) grant 71771044

Due to the increasing awareness of sustainable development, the manufacturer's product-line design gets wide attention. Nowadays, the traditional manufacturer that produces non-green products is considering whether to introduce upgraded green products. This paper studies the manufacturer's optimal product-line design considering the quality difference between non-green and green products. Besides, our model also investigates the difference in unit production cost, green research and development (R&D) investment, and market segmentation. The results show that, from the manufacturer's perspective, producing green products is a better choice when non-green products are of low quality. In addition, the retailer is always inclined to sell green products. Further, the consumers' preference for non-green and green products is divided. And the consumer surplus under different product-line designs is analysed. Finally, two contracts are proposed and compared to encourage the manufacturer to produce green products.

Citation: Zhi-tang Li, Cui-hua Zhang, Wei Kong, Ru-xia Lyu. The optimal product-line design and incentive mechanism in a supply chain with customer environmental awareness. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021204
References:
[1]

E. Alkaya and G. Demirer, Greening of production in metal processing industry through process modifications and improved management practices, Resources, Conservation and Recycling, 77 (2013), 89-96.  doi: 10.1016/j.resconrec.2013.06.004.  Google Scholar

[2]

A. Atasu and R. Subramanian, Extended producer responsibility for e-waste: Individual or collective producer responsibility?, Production and Operations Management, 21 (2012), 1042-1059.  doi: 10.1111/j.1937-5956.2012.01327.x.  Google Scholar

[3]

Z. Basiri and J. Heydari, A mathematical model for green supply chain coordination with substitutable products, Journal of Cleaner Production, 145 (2017), 232-249.  doi: 10.1016/j.jclepro.2017.01.060.  Google Scholar

[4]

D. BuccellaL. Fanti and L. Gori, To abate, or not to abate? A strategic approach on green production in Cournot and Bertrand duopolies, Energy Economics, 96 (2021), 105164.  doi: 10.1016/j.eneco.2021.105164.  Google Scholar

[5]

C. Chen, Design for the environment: A quality-based Model for green product development, Management Science, 47 (2001), 250-263.  doi: 10.1287/mnsc.47.2.250.9841.  Google Scholar

[6]

J. ChenS. Dimitrov and H. Pun, The impact of government subsidy on supply Chains' sustainability innovation, Omega, 86 (2019), 42-58.  doi: 10.1016/j.omega.2018.06.012.  Google Scholar

[7]

Y. ChenB. Tomlin and Y. Wang, Coproduct technologies: Product line design and process innovation, Management Science, 59 (2013), 2772-2789.  doi: 10.1287/mnsc.2013.1738.  Google Scholar

[8]

X. ChenX. Wang and M. Zhou, Firms' green R&D cooperation behaviour in a supply chain: Technological spillover, power and coordination, International Journal of Production Economics, 218 (2019), 118-134.  doi: 10.1016/j.ijpe.2019.04.033.  Google Scholar

[9]

M. C. CohenR. Lobel and G. Perakis, The impact of demand uncertainty on consumer subsidies for green technology adoption, Management Science, 62 (2015), 1235-1258.  doi: 10.1287/mnsc.2015.2173.  Google Scholar

[10]

M. FergusonV. D. GuideE. Koca and G. C. Souza, The value of quality grading in remanufacturing, Production and Operations Management, 18 (2009), 300-314.  doi: 10.1111/j.1937-5956.2009.01033.x.  Google Scholar

[11]

D. Ghosh and J. Shah, Supply chain analysis under green sensitive consumer demand and cost sharing contract, International Journal of Production Economics, 164 (2015), 319-329.  doi: 10.1016/j.ijpe.2014.11.005.  Google Scholar

[12]

A. Goli and B. Malmir, A covering tour approach for disaster relief locating and routing with fuzzy demand, International J. Intelligent Transportation Systems Research, 18 (2020), 140-152.  doi: 10.1007/s13177-019-00185-2.  Google Scholar

[13]

A. Goli, E. B. Tirkolaee and N. S. Aydin, Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors, IEEE Transactions on Fuzzy Systems, (2021), 1–1. doi: 10.1109/TFUZZ.2021.3053838.  Google Scholar

[14]

A. GoliH. K. ZareR. T. Moghaddam and A. Sadeghieh, Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm, Numerical Algebra, 9 (2019), 187-209.  doi: 10.3934/naco.2019014.  Google Scholar

[15]

A. Goli, H. K. Zare, R. T. Moghaddam and A. Sadeghieh, A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: A case study in dairy industry, J. Industrial and Systems Engineering, 11 (2018), 190-203. doi: https://mpra.ub.uni-muenchen.de/id/eprint/101727.  Google Scholar

[16]

A. GoliH. K. ZareR. T. MoghaddamA. SadeghiehM. Sasanian and R. M. Kordestanizadeh, An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand fordairy products: A case study, Network Computation in Neural Systems, 32 (2021), 1-35.  doi: 10.1080/0954898X.2020.1849841.  Google Scholar

[17]

S. K. GoudaS. Jonnalagedda and H. Saranga, Design for the environment: Impact of regulatory policies on product development, European J. Oper. Res., 248 (2016), 558-570.  doi: 10.1016/j.ejor.2015.07.043.  Google Scholar

[18]

K. Govindan and M. Hasanagic, A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective, International J. Production Research, 56 (2018), 278-311.  doi: 10.1080/00207543.2017.1402141.  Google Scholar

[19]

S. GuoT. M. Choi and B. Shen, Green product development under competition: A study of the fashion apparel industry, European J. Oper. Res., 280 (2020), 523-538.  doi: 10.1016/j.ejor.2019.07.050.  Google Scholar

[20]

L. Guo and J. Zhang, Consumer deliberation and product line design, Marketing Science, 31 (2012), 995-1007.  doi: 10.1287/mksc.1120.0736.  Google Scholar

[21]

P. HeY. HeC. ShiH. Xu and L. Zhou, Cost-sharing contract design in a low-carbon service supply chain, Computers & Industrial Engineering, 139 (2020), 106160.  doi: 10.1016/j.cie.2019.106160.  Google Scholar

[22]

P. HeY. He and H. Xu, Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy, International Journal of Production Economics, 213 (2019), 108-123.  doi: 10.1016/j.ijpe.2019.03.013.  Google Scholar

[23]

P. HeJ. Zhang and W. Li, The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective, J. Environmental Management, 293 (2021), 112837.  doi: 10.1016/j.jenvman.2021.112837.  Google Scholar

[24]

Z. Hong and X. Guo, Green product supply chain contracts considering environmental responsibilities, Omega, 83 (2019), 155-166.  doi: 10.1016/j.omega.2018.02.010.  Google Scholar

[25]

L. Hsiao and Y. Chen, Strategic motive for introducing internet channels in a supply chain, Production and Operations Management, 23 (2014), 36-47.  doi: 10.1111/poms.12051.  Google Scholar

[26]

D. KrassT. Nedorezov and A. Ovchinnikov, Environmental taxes and the choice of green technology, Production and Operations Management, 22 (2013), 1035-1055.  doi: 10.1111/poms.12023.  Google Scholar

[27]

Q. LiX. GuanT. Shi and W. Jiao, Green product design with competition and fairness concerns in the circular economy era, J. Operational Research, 58 (2020), 165-179.  doi: 10.1080/00207543.2019.1657249.  Google Scholar

[28]

Q. LiT. Xiao and Y. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns, J. Cleaner Production, 190 (2018), 303-314.  doi: 10.1016/j.jclepro.2018.04.032.  Google Scholar

[29]

X. Li and Y. Li, Chain-to-chain competition on product sustainability, J. Cleaner Production, 112 (2016), 2058-2065.  doi: 10.1016/j.jclepro.2014.09.027.  Google Scholar

[30]

W. S. Lim, V. Mak, C. S. Tang and R. P. Kc, Adopting cost transparency as a marketing strategy: Analytical and experimental exploration, SSRN Electronic Journal, 2018 doi: 10.2139/ssrn.3252823.  Google Scholar

[31]

Y. LiuD. SunH. WangX. WangG. Yu and X. Zhao, An evaluation of China's agricultural green production: 1978-2017, J. Cleaner Production, 243 (2020), 118483.  doi: 10.1016/j.jclepro.2019.118483.  Google Scholar

[32]

K. J. MizgierJ. M. Pasia and S. Talluri, Multiobjective capital allocation for supplier development under risk, International Journal of Production Research, 55 (2017), 5243-5258.  doi: 10.1080/00207543.2017.1302618.  Google Scholar

[33]

K. J. MizgierS. M. Wagner and J. A. Holyst, Modeling defaults of companies in multi-stage supply chain networks, International Journal of Production Economics, 135 (2012), 14-23.  doi: 10.1016/j.ijpe.2010.09.022.  Google Scholar

[34]

I. MoonY. J. Jeong and S. Saha, Investment and coordination decisions in a supply chain of fresh agricultural products, Operational Research, 20 (2020), 2307-2331.  doi: 10.1007/s12351-018-0411-4.  Google Scholar

[35]

K. MuraliM. K. Lim and N. C. Petruzzi, The effects of ecolabels and environmental regulation on green product development, Manufacturing & Service Operations Management, 21 (2018), 519-535.  doi: 10.2139/ssrn.2821252.  Google Scholar

[36]

H. MuslemaniX. LiangK. KaesehageF. Ascui and J. Wilson, Opportunities and challenges for decarbonizing steel production by creating markets for 'green steel' products, J. Cleaner Production, 315 (2021), 128127.  doi: 10.1016/j.jclepro.2021.128127.  Google Scholar

[37]

M. C. OlsenR. J. Slotegraaf and S. R. Chandukala, Green claims and message frames: How green new products change brand attitude, J. Marketing, 78 (2014), 119-137.  doi: 10.1509/jm.13.0387.  Google Scholar

[38]

Y. OzinciY. Perlman and S. Westrich, Competition between organic and conventional products with different utilities and shelf lives, International J. Production Economics, 191 (2017), 74-84.  doi: 10.1016/j.ijpe.2017.05.005.  Google Scholar

[39]

S. M. Pahlevan, S. Hosseini and A. Goli, Sustainable supply chain network design using products' life cycle in the aluminum industry, Environmental Science and Pollution Research, (2021). doi: 10.1007/s11356-020-12150-8.  Google Scholar

[40]

J. Peuckert and R. Quitzow, Acceptance of bio–based products in the business–to–business market and public procurement: Expert survey results, Biofuels, Bioproducts and Biorefining, 11 (2017), 92-109.  doi: 10.1002/bbb.1725.  Google Scholar

[41]

B. ShenY. Cao and X. Xu, Product line design and quality differentiation for green and non-green products in a supply chain, International J. Production Research, 58 (2020), 148-164.  doi: 10.1080/00207543.2019.1656843.  Google Scholar

[42]

B. ShenX. Xu and T. M. Choi, Simplicity is beauty: Pricing coordination in two-product supply chains with simplest contracts under voluntary compliance, International J. Production Research, 57 (2019), 2769-2787.  doi: 10.1080/00207543.2018.1530474.  Google Scholar

[43]

M. Sinayi and M. R. Barzoki, A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention, Journal of Cleaner Production, 196 (2018), 1443-1458.  doi: 10.1016/j.jclepro.2018.05.212.  Google Scholar

[44]

E. B. Tirkolaee, Z. Dashtian, G. W. Weber, H. Tomaskova, M. Soltani and N. S. Mousavi, An integrated decision-making approach for green supplier selection in an agri-food supply chain: Threshold of robustness worthiness, Mathematics, 9 (2021). doi: 10.3390/math9111304.  Google Scholar

[45]

E. B. TirkolaeeS. HadianG. W. Weber and I. Mahdavi, A robust green traffic-based routing problem for perishable products distribution, Computational Intelligence, 36 (2020), 80-101.  doi: 10.1111/coin.12240.  Google Scholar

[46]

E. B. TirkolaeeA. MardaniZ. DashtianM. Soltani and G. W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, Journal of Cleaner Production, 250 (2020), 119517.  doi: 10.1016/j.jclepro.2019.119517.  Google Scholar

[47]

C. WangP. NieD. Peng and Z. Li, Green insurance subsidy for promoting clean production innovation, J. Cleaner Production, 148 (2017), 111-117.  doi: 10.1016/j.jclepro.2017.01.145.  Google Scholar

[48]

W. WangA. Krishna and B. McFerran, Turning off the lights: Consumers' environmental efforts depend on visible efforts of firms, J. Marketing Research, 54 (2017), 478-494.  doi: 10.1509/jmr.14.0441.  Google Scholar

[49]

Z. Wang and Q. Wu, Carbon emission reduction and product collection decisions in the closed-loop supply chain with cap-and-trade regulation, International J. Production Research, 59 (2021), 4359-4383.  doi: 10.1080/00207543.2020.1762943.  Google Scholar

[50]

X. XuP. HeH. Xu and Q. Zhang, Supply chain coordination with green technology under cap-and-trade regulation, International J. Production Economics, 183 (2017), 433-442.  doi: 10.1016/j.ijpe.2016.08.029.  Google Scholar

[51]

H. Yang and W. Chen, Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus Cost-sharing, Omega, 78 (2018), 179-191.  doi: 10.1016/j.omega.2017.06.012.  Google Scholar

[52]

A. Yenipazarli and A. Vakharia, Pricing, market coverage and capacity: Can green and brown products co-exist?, European J. Operational Research, 242 (2015), 304-315.  doi: 10.1016/j.ejor.2014.09.039.  Google Scholar

[53]

X. YuY. Lan and R. Zhao, Strategic green technology innovation in a two-stage alliance: Vertical collaboration or co-development?, Omega, 98 (2021), 102116.  doi: 10.1016/j.omega.2019.102116.  Google Scholar

[54]

P. ZhangY. He and C. Shi, Retailer's channel structure choice: Online channel, offline channel, or dual channels?, International Journal of Production Economics, 191 (2017), 37-50.  doi: 10.1016/j.ijpe.2017.05.013.  Google Scholar

[55]

Q. ZhangQ. Zhao and X. Zhao, Manufacturer's product choice in the presence of environment-conscious consumers: Brown product or green product, International J. Production Research, 57 (2019), 7423-7438.  doi: 10.1080/00207543.2019.1624853.  Google Scholar

[56]

Q. ZhangQ. ZhaoX. Zhao and L. Tang, On the introduction of green product to a market with environmentally conscious consumers, Computers & Industrial Engineering, 139 (2020), 106190.  doi: 10.1016/j.cie.2019.106190.  Google Scholar

[57]

W. ZhangQ. ZhangK. J. Mizgier and Y. Zhang, Integrating the customers' perceived risks and benefits into the triple-channel retailing, International J. Production Research, 55 (2017), 6676-6690.  doi: 10.1080/00207543.2017.1336679.  Google Scholar

[58]

X. ZhangX. Xu and P. He, New product design strategies with subsidy policies, Journal of Systems Science and Systems Engineering, 21 (2012), 356-371.  doi: 10.1007/s11518-012-5199-9.  Google Scholar

[59]

Y. ZhouJ. Guo and W. Zhou, Pricing/service strategies for a dual-channel supply chain with free riding and service-cost sharing, International Journal of Production Economics, 196 (2018), 198-210.  doi: 10.1016/j.ijpe.2017.11.014.  Google Scholar

[60]

Y. Zhou and X. Ye, Differential game model of joint emission reduction strategies and contract design in a dual-channel supply chain, J. Cleaner Production, 190 (2018), 592-607.  doi: 10.1016/j.jclepro.2018.04.133.  Google Scholar

[61]

X. ZhuJ. DuK. B. Boamah and X. Long, Dynamic analysis of green investment decision of manufacturer, Environmental Science and Pollution Research, 27 (2020), 16998-17012.  doi: 10.1007/s11356-020-08144-1.  Google Scholar

[62]

T. ZouB. Zhou and B. Jiang, Product-line design in the presence of consumers' anticipated regret, Management Science, 66 (2020), 5665-5682.  doi: 10.1287/mnsc.2019.3506.  Google Scholar

[63]

Y. Zu and X. Zeng, Research on energy efficiency improvement in a supply chain with discontinuous market demand, Environmental Science and Pollution Research, 27 (2020), 15537-15551.  doi: 10.1007/s11356-020-08080-0.  Google Scholar

show all references

References:
[1]

E. Alkaya and G. Demirer, Greening of production in metal processing industry through process modifications and improved management practices, Resources, Conservation and Recycling, 77 (2013), 89-96.  doi: 10.1016/j.resconrec.2013.06.004.  Google Scholar

[2]

A. Atasu and R. Subramanian, Extended producer responsibility for e-waste: Individual or collective producer responsibility?, Production and Operations Management, 21 (2012), 1042-1059.  doi: 10.1111/j.1937-5956.2012.01327.x.  Google Scholar

[3]

Z. Basiri and J. Heydari, A mathematical model for green supply chain coordination with substitutable products, Journal of Cleaner Production, 145 (2017), 232-249.  doi: 10.1016/j.jclepro.2017.01.060.  Google Scholar

[4]

D. BuccellaL. Fanti and L. Gori, To abate, or not to abate? A strategic approach on green production in Cournot and Bertrand duopolies, Energy Economics, 96 (2021), 105164.  doi: 10.1016/j.eneco.2021.105164.  Google Scholar

[5]

C. Chen, Design for the environment: A quality-based Model for green product development, Management Science, 47 (2001), 250-263.  doi: 10.1287/mnsc.47.2.250.9841.  Google Scholar

[6]

J. ChenS. Dimitrov and H. Pun, The impact of government subsidy on supply Chains' sustainability innovation, Omega, 86 (2019), 42-58.  doi: 10.1016/j.omega.2018.06.012.  Google Scholar

[7]

Y. ChenB. Tomlin and Y. Wang, Coproduct technologies: Product line design and process innovation, Management Science, 59 (2013), 2772-2789.  doi: 10.1287/mnsc.2013.1738.  Google Scholar

[8]

X. ChenX. Wang and M. Zhou, Firms' green R&D cooperation behaviour in a supply chain: Technological spillover, power and coordination, International Journal of Production Economics, 218 (2019), 118-134.  doi: 10.1016/j.ijpe.2019.04.033.  Google Scholar

[9]

M. C. CohenR. Lobel and G. Perakis, The impact of demand uncertainty on consumer subsidies for green technology adoption, Management Science, 62 (2015), 1235-1258.  doi: 10.1287/mnsc.2015.2173.  Google Scholar

[10]

M. FergusonV. D. GuideE. Koca and G. C. Souza, The value of quality grading in remanufacturing, Production and Operations Management, 18 (2009), 300-314.  doi: 10.1111/j.1937-5956.2009.01033.x.  Google Scholar

[11]

D. Ghosh and J. Shah, Supply chain analysis under green sensitive consumer demand and cost sharing contract, International Journal of Production Economics, 164 (2015), 319-329.  doi: 10.1016/j.ijpe.2014.11.005.  Google Scholar

[12]

A. Goli and B. Malmir, A covering tour approach for disaster relief locating and routing with fuzzy demand, International J. Intelligent Transportation Systems Research, 18 (2020), 140-152.  doi: 10.1007/s13177-019-00185-2.  Google Scholar

[13]

A. Goli, E. B. Tirkolaee and N. S. Aydin, Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors, IEEE Transactions on Fuzzy Systems, (2021), 1–1. doi: 10.1109/TFUZZ.2021.3053838.  Google Scholar

[14]

A. GoliH. K. ZareR. T. Moghaddam and A. Sadeghieh, Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm, Numerical Algebra, 9 (2019), 187-209.  doi: 10.3934/naco.2019014.  Google Scholar

[15]

A. Goli, H. K. Zare, R. T. Moghaddam and A. Sadeghieh, A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: A case study in dairy industry, J. Industrial and Systems Engineering, 11 (2018), 190-203. doi: https://mpra.ub.uni-muenchen.de/id/eprint/101727.  Google Scholar

[16]

A. GoliH. K. ZareR. T. MoghaddamA. SadeghiehM. Sasanian and R. M. Kordestanizadeh, An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand fordairy products: A case study, Network Computation in Neural Systems, 32 (2021), 1-35.  doi: 10.1080/0954898X.2020.1849841.  Google Scholar

[17]

S. K. GoudaS. Jonnalagedda and H. Saranga, Design for the environment: Impact of regulatory policies on product development, European J. Oper. Res., 248 (2016), 558-570.  doi: 10.1016/j.ejor.2015.07.043.  Google Scholar

[18]

K. Govindan and M. Hasanagic, A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective, International J. Production Research, 56 (2018), 278-311.  doi: 10.1080/00207543.2017.1402141.  Google Scholar

[19]

S. GuoT. M. Choi and B. Shen, Green product development under competition: A study of the fashion apparel industry, European J. Oper. Res., 280 (2020), 523-538.  doi: 10.1016/j.ejor.2019.07.050.  Google Scholar

[20]

L. Guo and J. Zhang, Consumer deliberation and product line design, Marketing Science, 31 (2012), 995-1007.  doi: 10.1287/mksc.1120.0736.  Google Scholar

[21]

P. HeY. HeC. ShiH. Xu and L. Zhou, Cost-sharing contract design in a low-carbon service supply chain, Computers & Industrial Engineering, 139 (2020), 106160.  doi: 10.1016/j.cie.2019.106160.  Google Scholar

[22]

P. HeY. He and H. Xu, Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy, International Journal of Production Economics, 213 (2019), 108-123.  doi: 10.1016/j.ijpe.2019.03.013.  Google Scholar

[23]

P. HeJ. Zhang and W. Li, The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective, J. Environmental Management, 293 (2021), 112837.  doi: 10.1016/j.jenvman.2021.112837.  Google Scholar

[24]

Z. Hong and X. Guo, Green product supply chain contracts considering environmental responsibilities, Omega, 83 (2019), 155-166.  doi: 10.1016/j.omega.2018.02.010.  Google Scholar

[25]

L. Hsiao and Y. Chen, Strategic motive for introducing internet channels in a supply chain, Production and Operations Management, 23 (2014), 36-47.  doi: 10.1111/poms.12051.  Google Scholar

[26]

D. KrassT. Nedorezov and A. Ovchinnikov, Environmental taxes and the choice of green technology, Production and Operations Management, 22 (2013), 1035-1055.  doi: 10.1111/poms.12023.  Google Scholar

[27]

Q. LiX. GuanT. Shi and W. Jiao, Green product design with competition and fairness concerns in the circular economy era, J. Operational Research, 58 (2020), 165-179.  doi: 10.1080/00207543.2019.1657249.  Google Scholar

[28]

Q. LiT. Xiao and Y. Qiu, Price and carbon emission reduction decisions and revenue-sharing contract considering fairness concerns, J. Cleaner Production, 190 (2018), 303-314.  doi: 10.1016/j.jclepro.2018.04.032.  Google Scholar

[29]

X. Li and Y. Li, Chain-to-chain competition on product sustainability, J. Cleaner Production, 112 (2016), 2058-2065.  doi: 10.1016/j.jclepro.2014.09.027.  Google Scholar

[30]

W. S. Lim, V. Mak, C. S. Tang and R. P. Kc, Adopting cost transparency as a marketing strategy: Analytical and experimental exploration, SSRN Electronic Journal, 2018 doi: 10.2139/ssrn.3252823.  Google Scholar

[31]

Y. LiuD. SunH. WangX. WangG. Yu and X. Zhao, An evaluation of China's agricultural green production: 1978-2017, J. Cleaner Production, 243 (2020), 118483.  doi: 10.1016/j.jclepro.2019.118483.  Google Scholar

[32]

K. J. MizgierJ. M. Pasia and S. Talluri, Multiobjective capital allocation for supplier development under risk, International Journal of Production Research, 55 (2017), 5243-5258.  doi: 10.1080/00207543.2017.1302618.  Google Scholar

[33]

K. J. MizgierS. M. Wagner and J. A. Holyst, Modeling defaults of companies in multi-stage supply chain networks, International Journal of Production Economics, 135 (2012), 14-23.  doi: 10.1016/j.ijpe.2010.09.022.  Google Scholar

[34]

I. MoonY. J. Jeong and S. Saha, Investment and coordination decisions in a supply chain of fresh agricultural products, Operational Research, 20 (2020), 2307-2331.  doi: 10.1007/s12351-018-0411-4.  Google Scholar

[35]

K. MuraliM. K. Lim and N. C. Petruzzi, The effects of ecolabels and environmental regulation on green product development, Manufacturing & Service Operations Management, 21 (2018), 519-535.  doi: 10.2139/ssrn.2821252.  Google Scholar

[36]

H. MuslemaniX. LiangK. KaesehageF. Ascui and J. Wilson, Opportunities and challenges for decarbonizing steel production by creating markets for 'green steel' products, J. Cleaner Production, 315 (2021), 128127.  doi: 10.1016/j.jclepro.2021.128127.  Google Scholar

[37]

M. C. OlsenR. J. Slotegraaf and S. R. Chandukala, Green claims and message frames: How green new products change brand attitude, J. Marketing, 78 (2014), 119-137.  doi: 10.1509/jm.13.0387.  Google Scholar

[38]

Y. OzinciY. Perlman and S. Westrich, Competition between organic and conventional products with different utilities and shelf lives, International J. Production Economics, 191 (2017), 74-84.  doi: 10.1016/j.ijpe.2017.05.005.  Google Scholar

[39]

S. M. Pahlevan, S. Hosseini and A. Goli, Sustainable supply chain network design using products' life cycle in the aluminum industry, Environmental Science and Pollution Research, (2021). doi: 10.1007/s11356-020-12150-8.  Google Scholar

[40]

J. Peuckert and R. Quitzow, Acceptance of bio–based products in the business–to–business market and public procurement: Expert survey results, Biofuels, Bioproducts and Biorefining, 11 (2017), 92-109.  doi: 10.1002/bbb.1725.  Google Scholar

[41]

B. ShenY. Cao and X. Xu, Product line design and quality differentiation for green and non-green products in a supply chain, International J. Production Research, 58 (2020), 148-164.  doi: 10.1080/00207543.2019.1656843.  Google Scholar

[42]

B. ShenX. Xu and T. M. Choi, Simplicity is beauty: Pricing coordination in two-product supply chains with simplest contracts under voluntary compliance, International J. Production Research, 57 (2019), 2769-2787.  doi: 10.1080/00207543.2018.1530474.  Google Scholar

[43]

M. Sinayi and M. R. Barzoki, A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention, Journal of Cleaner Production, 196 (2018), 1443-1458.  doi: 10.1016/j.jclepro.2018.05.212.  Google Scholar

[44]

E. B. Tirkolaee, Z. Dashtian, G. W. Weber, H. Tomaskova, M. Soltani and N. S. Mousavi, An integrated decision-making approach for green supplier selection in an agri-food supply chain: Threshold of robustness worthiness, Mathematics, 9 (2021). doi: 10.3390/math9111304.  Google Scholar

[45]

E. B. TirkolaeeS. HadianG. W. Weber and I. Mahdavi, A robust green traffic-based routing problem for perishable products distribution, Computational Intelligence, 36 (2020), 80-101.  doi: 10.1111/coin.12240.  Google Scholar

[46]

E. B. TirkolaeeA. MardaniZ. DashtianM. Soltani and G. W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, Journal of Cleaner Production, 250 (2020), 119517.  doi: 10.1016/j.jclepro.2019.119517.  Google Scholar

[47]

C. WangP. NieD. Peng and Z. Li, Green insurance subsidy for promoting clean production innovation, J. Cleaner Production, 148 (2017), 111-117.  doi: 10.1016/j.jclepro.2017.01.145.  Google Scholar

[48]

W. WangA. Krishna and B. McFerran, Turning off the lights: Consumers' environmental efforts depend on visible efforts of firms, J. Marketing Research, 54 (2017), 478-494.  doi: 10.1509/jmr.14.0441.  Google Scholar

[49]

Z. Wang and Q. Wu, Carbon emission reduction and product collection decisions in the closed-loop supply chain with cap-and-trade regulation, International J. Production Research, 59 (2021), 4359-4383.  doi: 10.1080/00207543.2020.1762943.  Google Scholar

[50]

X. XuP. HeH. Xu and Q. Zhang, Supply chain coordination with green technology under cap-and-trade regulation, International J. Production Economics, 183 (2017), 433-442.  doi: 10.1016/j.ijpe.2016.08.029.  Google Scholar

[51]

H. Yang and W. Chen, Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus Cost-sharing, Omega, 78 (2018), 179-191.  doi: 10.1016/j.omega.2017.06.012.  Google Scholar

[52]

A. Yenipazarli and A. Vakharia, Pricing, market coverage and capacity: Can green and brown products co-exist?, European J. Operational Research, 242 (2015), 304-315.  doi: 10.1016/j.ejor.2014.09.039.  Google Scholar

[53]

X. YuY. Lan and R. Zhao, Strategic green technology innovation in a two-stage alliance: Vertical collaboration or co-development?, Omega, 98 (2021), 102116.  doi: 10.1016/j.omega.2019.102116.  Google Scholar

[54]

P. ZhangY. He and C. Shi, Retailer's channel structure choice: Online channel, offline channel, or dual channels?, International Journal of Production Economics, 191 (2017), 37-50.  doi: 10.1016/j.ijpe.2017.05.013.  Google Scholar

[55]

Q. ZhangQ. Zhao and X. Zhao, Manufacturer's product choice in the presence of environment-conscious consumers: Brown product or green product, International J. Production Research, 57 (2019), 7423-7438.  doi: 10.1080/00207543.2019.1624853.  Google Scholar

[56]

Q. ZhangQ. ZhaoX. Zhao and L. Tang, On the introduction of green product to a market with environmentally conscious consumers, Computers & Industrial Engineering, 139 (2020), 106190.  doi: 10.1016/j.cie.2019.106190.  Google Scholar

[57]

W. ZhangQ. ZhangK. J. Mizgier and Y. Zhang, Integrating the customers' perceived risks and benefits into the triple-channel retailing, International J. Production Research, 55 (2017), 6676-6690.  doi: 10.1080/00207543.2017.1336679.  Google Scholar

[58]

X. ZhangX. Xu and P. He, New product design strategies with subsidy policies, Journal of Systems Science and Systems Engineering, 21 (2012), 356-371.  doi: 10.1007/s11518-012-5199-9.  Google Scholar

[59]

Y. ZhouJ. Guo and W. Zhou, Pricing/service strategies for a dual-channel supply chain with free riding and service-cost sharing, International Journal of Production Economics, 196 (2018), 198-210.  doi: 10.1016/j.ijpe.2017.11.014.  Google Scholar

[60]

Y. Zhou and X. Ye, Differential game model of joint emission reduction strategies and contract design in a dual-channel supply chain, J. Cleaner Production, 190 (2018), 592-607.  doi: 10.1016/j.jclepro.2018.04.133.  Google Scholar

[61]

X. ZhuJ. DuK. B. Boamah and X. Long, Dynamic analysis of green investment decision of manufacturer, Environmental Science and Pollution Research, 27 (2020), 16998-17012.  doi: 10.1007/s11356-020-08144-1.  Google Scholar

[62]

T. ZouB. Zhou and B. Jiang, Product-line design in the presence of consumers' anticipated regret, Management Science, 66 (2020), 5665-5682.  doi: 10.1287/mnsc.2019.3506.  Google Scholar

[63]

Y. Zu and X. Zeng, Research on energy efficiency improvement in a supply chain with discontinuous market demand, Environmental Science and Pollution Research, 27 (2020), 15537-15551.  doi: 10.1007/s11356-020-08080-0.  Google Scholar

Figure 1.  The flow diagram of implement methodology
Figure 2.  Product-line design and the sequence of events
Figure 3.  Impact of $ q_g $ and $ q_n $ on product-line selection
Figure 4.  Impact of $ q_g $ and $ q_n $ on consumer surplus
Figure 5.  Impact of $ q_g $ on the level of green innovation effort
Figure 6.  Impact of $ q_g $ on the profit under the contract
Figure 7.  Impact of $ k $ on the profit
Figure 8.  Impact of $ \gamma $ on the profit
Figure 9.  Impact of $ \theta $ on the profit
Figure 10.  Revenue Share of Green Products in Philips Business Division 2017-2019 (Unit: million Euros)
Table 1.  Practices of the enterprise's green production
Industry The practice of green production
Automobile SAIC General Motors promotes the strategy of "greening the future". Buick and Chevrolet's 1.2L-1.6L vehicles are equipped with EcotecDVVT and S-TEC engines. Compared with the products of the same level, the manual gearboxes are high performance and fuel-efficient(https://www.saic-gm.com/www/web/saic-gm/satep.).
Household appliance Philips uses green technology ranging from energy-saving lighting to TV. Compared with traditional products, its energy-saving bulbs can save 80% of electrical energy and provide sustainable lighting solutions(https://www.philips.com.cn/a-w/about-philips/sustainability.html.)
Commodity Procter & Gamble reduces the use of materials by 10% through the optimization of packaging material and the weight of each diaper is greatly decreased by technological innovation (https://www.pg.com.cn/Csr/Product.aspx.).
Agriculture The role of agricultural green production technologies (AGPTs) adoption rates improves low-carbon efficiency in China[8]. Green production is widely mentioned in the field of agriculture [9,10]
Steel production Decarburization technology leads the development of green steel [11].
Metal processing Environmental performance in the metal processing industry could be improved by green technologies (process modifications and management practices) [12].
Fashion apparels H & M, Marks & Spencer, and Levi's, have produced low-carbon products using new technology to reduce carbon emissions during production [13,14].
Industry The practice of green production
Automobile SAIC General Motors promotes the strategy of "greening the future". Buick and Chevrolet's 1.2L-1.6L vehicles are equipped with EcotecDVVT and S-TEC engines. Compared with the products of the same level, the manual gearboxes are high performance and fuel-efficient(https://www.saic-gm.com/www/web/saic-gm/satep.).
Household appliance Philips uses green technology ranging from energy-saving lighting to TV. Compared with traditional products, its energy-saving bulbs can save 80% of electrical energy and provide sustainable lighting solutions(https://www.philips.com.cn/a-w/about-philips/sustainability.html.)
Commodity Procter & Gamble reduces the use of materials by 10% through the optimization of packaging material and the weight of each diaper is greatly decreased by technological innovation (https://www.pg.com.cn/Csr/Product.aspx.).
Agriculture The role of agricultural green production technologies (AGPTs) adoption rates improves low-carbon efficiency in China[8]. Green production is widely mentioned in the field of agriculture [9,10]
Steel production Decarburization technology leads the development of green steel [11].
Metal processing Environmental performance in the metal processing industry could be improved by green technologies (process modifications and management practices) [12].
Fashion apparels H & M, Marks & Spencer, and Levi's, have produced low-carbon products using new technology to reduce carbon emissions during production [13,14].
Table 2.  Relative running time of the considered filters
Paper Product-line design Green level Pricing strategy Quality-based model Coordination Game theory
Chen et al. [17] Y N Y N N N
Yenipazarli and Vakharia. [33] N N Y N N Y
Ozinci et al. [34] N N Y N N Y
Zhang et al. [18] Y Y Y N N N
Shen et al. [15] Y N Y Y N Y
Zhang et al. [35] N N Y N N Y
Zou et al. [16] Y N Y Y N Y
Tirkolaee et al. [39] N Y N N N N
Sinayi and Rasti-Barzoki. [41] N Y Y N Y Y
Chen et al. [42] N Y Y N Y Y
Yu et al. [43] N N Y N Y Y
Zhu et al. [44] N Y Y N N Y
Zu et al. [45] N N Y N N Y
Chen. [47] N N Y Y N Y
Zhang et al. [48] N N Y Y N Y
Gouda et al. [49] Y N Y Y N Y
Murali et al. [50] N N Y Y N Y
Xu et al. [19] N N Y N Y Y
Zhou and Ye. [20] N N Y N Y Y
He et al. [21] N N Y N Y Y
Li et al. [22] N N Y N Y Y
Yang et al. [23] N N Y N Y Y
Moon et al. [24] N N Y N Y Y
Our paper Y Y Y Y Y Y
Paper Product-line design Green level Pricing strategy Quality-based model Coordination Game theory
Chen et al. [17] Y N Y N N N
Yenipazarli and Vakharia. [33] N N Y N N Y
Ozinci et al. [34] N N Y N N Y
Zhang et al. [18] Y Y Y N N N
Shen et al. [15] Y N Y Y N Y
Zhang et al. [35] N N Y N N Y
Zou et al. [16] Y N Y Y N Y
Tirkolaee et al. [39] N Y N N N N
Sinayi and Rasti-Barzoki. [41] N Y Y N Y Y
Chen et al. [42] N Y Y N Y Y
Yu et al. [43] N N Y N Y Y
Zhu et al. [44] N Y Y N N Y
Zu et al. [45] N N Y N N Y
Chen. [47] N N Y Y N Y
Zhang et al. [48] N N Y Y N Y
Gouda et al. [49] Y N Y Y N Y
Murali et al. [50] N N Y Y N Y
Xu et al. [19] N N Y N Y Y
Zhou and Ye. [20] N N Y N Y Y
He et al. [21] N N Y N Y Y
Li et al. [22] N N Y N Y Y
Yang et al. [23] N N Y N Y Y
Moon et al. [24] N N Y N Y Y
Our paper Y Y Y Y Y Y
Table 3.  Notations for model parameters
Abbreviations Description
$ N/n $ The production of the non-green product
$ G/g $ The production of the green product
$ m $ The manufacturer
$ r $ The retailer
Variables
$ w_i $ The unit wholesale price of the product $ i $, where $ i=n,g $
$ p_i $ The unit retail price of the product $ i $, where $ i=n,g $
$ e $ Green effort of the green product
Parameters
$ q_i $ Product quality for the product $ i $, where $ i=n,g $
$ c_i $ The unit production cost for the product $ i $, where $ i=n,g $
$ v $ Consumer's willingness to pay for the product
$ k $ Coefficient of manufacturer's green R&D effort cost
$ \gamma $ Sensitivity coefficient of green R&D effort to market demand, $ \gamma > 0 $ denotes consumers' green preference towards the green effort.
$ \theta $ The proportion of green consumers in the market
Functions
$ U_{ns}^j $ Consumer's utility obtained from the product $ j $ in the non-green segment, where $ j=N,G $
$ U_{gs}^{j} $ Consumer's utility obtained from the product $ j $ in the green segment, where $ j=N,G $
$ D_i $ Demand for the product $ i $, where $ i=n,g $
$ \pi_m^j $ The profit of the manufacturer from producing the product $ j $, where $ j=N,G $
$ \pi_r^j $ The profit of the retailer from selling the product $ j $, where $ j=N,G $
$ CS^j $ Consumer surplus obtained from purchasing the product $ j $, where $ j=N,G $
Abbreviations Description
$ N/n $ The production of the non-green product
$ G/g $ The production of the green product
$ m $ The manufacturer
$ r $ The retailer
Variables
$ w_i $ The unit wholesale price of the product $ i $, where $ i=n,g $
$ p_i $ The unit retail price of the product $ i $, where $ i=n,g $
$ e $ Green effort of the green product
Parameters
$ q_i $ Product quality for the product $ i $, where $ i=n,g $
$ c_i $ The unit production cost for the product $ i $, where $ i=n,g $
$ v $ Consumer's willingness to pay for the product
$ k $ Coefficient of manufacturer's green R&D effort cost
$ \gamma $ Sensitivity coefficient of green R&D effort to market demand, $ \gamma > 0 $ denotes consumers' green preference towards the green effort.
$ \theta $ The proportion of green consumers in the market
Functions
$ U_{ns}^j $ Consumer's utility obtained from the product $ j $ in the non-green segment, where $ j=N,G $
$ U_{gs}^{j} $ Consumer's utility obtained from the product $ j $ in the green segment, where $ j=N,G $
$ D_i $ Demand for the product $ i $, where $ i=n,g $
$ \pi_m^j $ The profit of the manufacturer from producing the product $ j $, where $ j=N,G $
$ \pi_r^j $ The profit of the retailer from selling the product $ j $, where $ j=N,G $
$ CS^j $ Consumer surplus obtained from purchasing the product $ j $, where $ j=N,G $
[1]

Xiujing Dang, Yang Xu, Gongbing Bi, Lei Qin. Pricing strategy and product quality design with platform-investment. Journal of Industrial & Management Optimization, 2022  doi: 10.3934/jimo.2021224

[2]

Chunfeng Liu, Yuanyuan Liu, Jufeng Wang. A revised imperialist competition algorithm for cellular manufacturing optimization based on product line design. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021175

[3]

Junying Hu, Xiaofei Qian, Jun Pei, Changchun Tan, Panos M. Pardalos, Xinbao Liu. A novel quality prediction method based on feature selection considering high dimensional product quality data. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021099

[4]

Büşra Özden, Oǧuz Yayla. Partial direct product difference sets and almost quaternary sequences. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021010

[5]

Kai Li, Yan Li, Jing Liu, Nenggui Zhao. Two-sided vertical competition considering product quality in a manufacturing-remanufacturing system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021187

[6]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[7]

Chirantan Mondal, Bibhas C. Giri. Investigating a green supply chain with product recycling under retailer's fairness behavior. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021129

[8]

Yuanyuan Jiao, Yuhang Li, Jun Du. Analysis on the influence of retailer's introduction of store brand under manufacturer's product line strategy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021220

[9]

Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026

[10]

Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465

[11]

Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257

[12]

Jing Shi, Tiaojun Xiao. Store assistance and coordination of supply chains facing consumer's return. Journal of Industrial & Management Optimization, 2016, 12 (3) : 991-1007. doi: 10.3934/jimo.2016.12.991

[13]

Zhong Wan, Jingjing Liu, Jing Zhang. Nonlinear optimization to management problems of end-of-life vehicles with environmental protection awareness and damaged/aging degrees. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2117-2139. doi: 10.3934/jimo.2019046

[14]

Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252

[15]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[16]

Wendai Lv, Siping Ji. Atmospheric environmental quality assessment method based on analytic hierarchy process. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 941-955. doi: 10.3934/dcdss.2019063

[17]

Shuhua Zhang, Zhuo Yang, Song Wang. Design of green bonds by double-barrier options. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1867-1882. doi: 10.3934/dcdss.2020110

[18]

Tinghai Ren, Kaifu Yuan, Dafei Wang, Nengmin Zeng. Effect of service quality on software sales and coordination mechanism in IT service supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021165

[19]

Chong Zhang, Yaxian Wang, Haiyan Wang. Design of an environmental contract under trade credits and carbon emission reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021141

[20]

Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (157)
  • HTML views (92)
  • Cited by (0)

Other articles
by authors

[Back to Top]