[1]
|
A. R. K. K. Abad and S. H. R. Pasandideh, Green closed-loop supply chain network design: A novel bi-objective chance-constraint approach, RAIRO Oper. Res., 55 (2021), 811-840.
doi: 10.1051/ro/2021035.
|
[2]
|
A. Alshamsi and A. Diabat, A reverse logistics network design, Journal of Manufacturing Systems, 37 (2015), 589-598.
doi: 10.1016/j.jmsy.2015.02.006.
|
[3]
|
G. H. Brundtland, Our common future-call for action, Environmental Conservation, 14 (1987), 291-294.
|
[4]
|
M. K. Chalmardi and J.-F. Camacho-Vallejo, A bi-level programming model for sustainable supply chain network design that considers incentives for using cleaner technologies, Journal of Cleaner Production, 213 (2019), 1035-1050.
doi: 10.1016/j.jclepro.2018.12.197.
|
[5]
|
K. Devika, A. Jafarian and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European J. Oper. Res., 235 (2014), 594-615.
doi: 10.1016/j.ejor.2013.12.032.
|
[6]
|
S. Elhedhli and R. Merrick, Green supply chain network design to reduce carbon emissions, Transportation Research Part D: Transport and Environment, 17 (2012), 370-379.
doi: 10.1016/j.trd.2012.02.002.
|
[7]
|
A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, A stochastic multi-objective model for a closed-loop supply chain with environmental considerations, Applied Soft Computing, 69 (2018), 232-249.
doi: 10.1016/j.asoc.2018.04.055.
|
[8]
|
M. Fazli-Khalaf, A. Mirzazadeh and M. S. Pishvaee, A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network, Human and Ecological Risk Assessment: An International Journal, 23 (2017), 2119-2149.
doi: 10.1080/10807039.2017.1367644.
|
[9]
|
P. Ghadimi, C. Wang and M. K. Lim, Sustainable supply chain modeling and analysis: Past debate, present problems and future challenges, Resources, Conservation and Recycling, 140 (2019), 72-84.
doi: 10.1016/j.resconrec.2018.09.005.
|
[10]
|
A. Goli, E. B. Tirkolaee and N. S. Aydin, Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors, IEEE Transactions on Fuzzy Systems, 29 (2021), 3686-3695.
doi: 10.1109/TFUZZ.2021.3053838.
|
[11]
|
A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam and A. Sadeghieh, Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm, Numer. Algebra Control Optim., 92 (2019), 187-209.
doi: 10.3934/naco.2019014.
|
[12]
|
V. Gonela, D. Salazar, J. Zhang, A. Osmani, I. Awudu and B. Altman, Designing a sustainable stochastic electricity generation network with hybrid production strategies, International Journal of Production Research, 57 (2018), 2304-2326.
|
[13]
|
K. Govindan, H. Soleimani and D. Kannan, Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future, European J. Oper. Res., 240 (2015), 603-626.
doi: 10.1016/j.ejor.2014.07.012.
|
[14]
|
V. D. R. Guide Jr and L. N. Van Wassenhove, OR FORUM-The evolution of closed-loop supply chain research, Operations Research, 57 (2009), 10-18.
|
[15]
|
H. Heidari-Fathian and S. H. R. Pasandideh, Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation, Computer & Industrial Engineering, 122 (2018), 95-105.
doi: 10.1016/j.cie.2018.05.051.
|
[16]
|
C. L. Hwang and A. S. M. Masud, Multiple Objective Decision Making, Methods and Applications: A State-of-The-Art Survey, Springer-Verlag, Berlin-New York, 1979.
|
[17]
|
A. R. Kalantari-Khalil-Abad and S. H. R. Pasandideh, Green closed-loop supply chain network design with stochastic demand: A new accelerated benders decomposition method, Scientia Iranica, 2020.
doi: 10.24200/sci.2020.53412.3249.
|
[18]
|
E. Keyvanshokooh, S. M. Ryan and E. Kabir, Hybrid robust and stochastic optimization for closed loop supply chain network design using accelerated benders decomposition, European J. Oper. Res., 249 (2016), 76-92.
doi: 10.1016/j.ejor.2015.08.028.
|
[19]
|
S. Liu and L. G. Papageorgiou, Multi objective optimization of production, distribution and capacity planning of global supply chains in the process industry, Omega-Part of Special Issue: Management Science and Environmental Issues, 41 (2013), 369-382.
|
[20]
|
R. Lotfi, B. Kargar, S. H. Hoseini, S. Nazari, S. Safavi and G. W. Weber, Resilience and sustainable supply chain network design by considering renewable energy, International Journal of Energy Research, 45 (2021), 17749-17766.
doi: 10.1002/er.6943.
|
[21]
|
R. Lotfi, N. Mardani and G. W. Weber, Robust bi-level programming for renewable energy location, International Journal of Energy Research, 45 (2021), 7521-7534.
doi: 10.1002/er.6332.
|
[22]
|
R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh and G. W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numer. Algebra Control Optim., 11 (2021), 221-253.
doi: 10.3934/naco.2020023.
|
[23]
|
A. Mitra, T. Ray Chadhuri, A. Mitra, P. Pramanick and S. Zaman, Impact of COVID-19 related shutdown on atmospheric carbon dioxide level in the city of Kolkata, Parana Journal of Science and Education, 6 (2020), 84-92.
|
[24]
|
A. S. Mohammadi, A. Alemtabriz, M. S. Pishvaee and M. Zandieh, A multi-stage stochastic programming model for sustainable closed-loop supply chain network design with financial decisions: A case study of plastic production and recycling supply chain, Scientia Iranica, 27 (2020), 377-395.
doi: 10.24200/sci.2019.21531.
|
[25]
|
Z. Mohtashami, A. Bozorgi-Amiri and R. Tavakkoli-Moghaddam, A two-stage multi-objective second generation biodiesel supply chain design considering social sustainability: A case study, Energy, 233 (2021), 121020.
doi: 10.1016/j.energy.2021.121020.
|
[26]
|
L. A. Moncayo-Martínez and D. Z. Zhang, Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design, International Journal of Production Economics, 131 (2011), 407-420.
|
[27]
|
S. Nayeri, S. A. Torabi, M. Tavakoli and Z. Sazvar, A multi-objective fuzzy robust stochastic model for designing a sustainable-resilient-responsive supply chain network, Journal of Cleaner Production, 311 (2021), 127691.
doi: 10.1016/j.jclepro.2021.127691.
|
[28]
|
M. Nicola, Z. Alsafi, C. Sohrabi, A. Kerwan, A. Al-Jabir, C. Iosifidis, M. Agha and R. Agha, The socio-economic implications of the coronavirus pandemic (COVID-19): A review, International Journal of Surgery, 78 (2020), 185-193.
doi: 10.1016/j.ijsu.2020.04.018.
|
[29]
|
K. P. Nurjanni, M. S. Carvalho and L. Costa, Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model, International Journal of Production Economics, 183 (2017), 421-432.
doi: 10.1016/j.ijpe.2016.08.028.
|
[30]
|
E. Özceylan, N. Demirel, C. Cetinkaya and E. Demirel, A closed-loop supply chain network design for automotive industry in Turkey, Computer and Industrial Engineering, 113 (2016), 727-745.
|
[31]
|
S. M. Pahlevan, S. M. S. Hosseini and A. Goli, Sustainable supply chain network design using products' life cycle in the aluminum industry, Environmental Science and Pollution Research, (2021), 1–25.
|
[32]
|
S. H. R. Pasandideh, S. T. A. Niaki and K. Asadi, Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA, Inform. Sci., 292 (2015), 57-74.
doi: 10.1016/j.ins.2014.08.068.
|
[33]
|
M. M. Paydar, V. Babaveisi and A. S. Safaei, An engine oil closed-loop supply chain design considering collection risk, Computers & Chemical Engineering, 104 (2017), 38-55.
doi: 10.1016/j.compchemeng.2017.04.005.
|
[34]
|
M. S. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming, Appl. Math. Model., 36 (2012), 3433-3446.
doi: 10.1016/j.apm.2011.10.007.
|
[35]
|
M. S. Pishvaee, J. Razmi and S. A. Torabi, An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Transportation Research Part E: Logistics and Transportation Review, 67 (2014), 14-38.
|
[36]
|
H. G. Resat and B. Unsal, A novel multi-objective optimization approach for sustainable supply chain: A case study in packaging industry, Sustainable Production and Consumption, 20 (2019), 29-39.
doi: 10.1016/j.spc.2019.04.008.
|
[37]
|
A. Sadrnia, A. P. Sani and N. R. Langarudi, Sustainable closed-loop supply chain network optimization for construction machinery recovering, J. Ind. Manag. Optim., 17 (2021), 2389-2414.
doi: 10.3934/jimo.2020074.
|
[38]
|
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty, European J. Oper. Res., 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046.
|
[39]
|
S. Seuring and M. Müller, From a literature review to a conceptual framework for sustainable supply chain management, Journal of Cleaner Production, 16 (2008), 1699-1710.
|
[40]
|
H. Soleimani and G. Kannan, A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks, Appl. Math. Model., 39 (2015), 3990-4012.
doi: 10.1016/j.apm.2014.12.016.
|
[41]
|
M. Talaei, B. F. Moghaddam, M. S. Pishvaee, A. Bozorgi-Amiri and S. Gholamnejad, A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry, Journal of Cleaner Production, 113 (2015), 662-673.
|
[42]
|
A. B. Tavana, M. Rabieh, M. S. Phishvaee and M. Esmaeili, A stochastic Mathematical Programming Approach to Resilient Supplier Selection and Order Allocation Problem: A Case Study of Iran Khodro Supply Chain, Scientia Iranica, 2021.
|
[43]
|
E. B. Tirkolaee, P. Abbasian and G. W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Science of the Total Environment, 726 (2021), 143607.
doi: 10.1016/j.scitotenv.2020.143607.
|
[44]
|
E. B. Tirkolaee, I. Mahdavi, M. M. S. Esfahani and G. W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty, Waste Management, 102 (2020), 340-350.
doi: 10.1016/j.wasman.2019.10.038.
|
[45]
|
Y.-C. Tsao, V.-V. Thanh, J.-C. Lu and V. Yu, Designing sustainable supply chain networks under uncertain environments: Fuzzy multi-objective programming, Journal of Cleaner Production, 174 (2018), 1550-1565.
doi: 10.1016/j.jclepro.2017.10.272.
|
[46]
|
M. Varsei and S. Polyakovskiy, Sustainable supply chain network design: A case of the wine industry in Australia, Omega, 66 (2017), 236-247.
doi: 10.1016/j.omega.2015.11.009.
|
[47]
|
P. Yang, H. Wee, S. Chung and P. Ho, Sequential and global optimization for a closed-loop deteriorating inventory supply chain, Math. Comput. Modelling, 52 (2010), 161-176.
doi: 10.1016/j.mcm.2010.02.005.
|
[48]
|
V. Yakavenka, I. Mallidis, D. Vlachos, E. Iakovou and Z. Eleni, Development of a multi-objective model for the design of sustainable supply chains: The case of perishable food products, Ann. Oper. Res., 294 (2020), 593-621.
doi: 10.1007/s10479-019-03434-5.
|
[49]
|
G. Zhang, J. Shang and W. Li, Collaborative production planning of supply chain under price and demand uncertainty, European J. Oper. Res., 215 (2011), 590-603.
doi: 10.1016/j.ejor.2011.07.007.
|
[50]
|
ISO, Final Draft International Standard ISO/FDIS 26000: 2010(E), Guidance on social responsibility (2010).
|
[51]
|
SAI. Social Accountability 8000 International Standards, SAI, New York (2001).
|
[52]
|
ISEA. Account Ability 1000. (AA1000) Framework, Standard, Guidelines and Professional Qualification, ISEA, London (1999).
|
[53]
|
ISO/TMB/WG/SR. Participating in the Future International Standard ISO 26000 on Social Responsibility, International Organization for Standardization, Geneva (2006).
|