[1]
|
C. B. Julio, L. D. Polli, L and S. M. Tania, Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc, Minerals Engineering, 21 (2008), 100-110.
|
[2]
|
M. Loan, O. M. G. Newman and R. M. G. Cooper, Defining the Paragoethite process for iron removal in zinc hydrometallurgy, Hydrometallurgy, 81 (2006), 104-129.
doi: 10.1016/j.hydromet.2005.11.002.
|
[3]
|
M. R. C. Ismael, Iron recovery from sulphate leach liquors in zinc hydrometallurgy, Minerals Engineering, 16 (2003), 31-39.
doi: 10.1016/S0892-6875(02)00310-2.
|
[4]
|
N. Chen, S. Yang and W. H. Gui, Fuzzy cognitive network control of iron sinking process by goethite method, The 35th China Control Conference, Chengdu, (in Chinese), 2016.
|
[5]
|
Y. F. Xie, S. W. Xie and Y. G. Li, Dynamic modeling and optimal control of goethite process based on the rate-controlling step, Control Engineering Practice, 58 (2017), 54-65.
doi: 10.1016/j.conengprac.2016.10.001.
|
[6]
|
N. Chen, J. Q. Zhou and J. J. Peng, Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network, Journal of Central South University, 26 (2019), 63-74.
doi: 10.1007/s11771-019-3982-1.
|
[7]
|
F. Q. Xiong, W. H. Gui and C. H. Yang, Dynamic modeling of iron removal process based on goethite method, Journal of Central South University, (Natural Science Edition), 43 (2012), 541–547.
|
[8]
|
T. Haakana, M. Lahtinen and H. Takala, Development and modelling of a novel reactor for direct leaching of zinc sulphide concentrates, Chemical Engineering Science, 62 (2007), 5648-5654.
doi: 10.1016/j.ces.2006.12.075.
|
[9]
|
Y. F. Xie, S. W. Xie and X. F. Chen, An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy, Hydrometallurgy, 151 (2015), 62-72.
doi: 10.1016/j.hydromet.2014.11.004.
|
[10]
|
Y. F. Xie and S. W. Xie, Coordinated optimization for the descent gradient of technical index in the iron removal process, IEEE Transactions on Cybernetics, 48 (2018), 3313-3322.
doi: 10.1109/TCYB.2018.2833805.
|
[11]
|
N. Chen, J. Y. Dai and X. J. Zhou, Distributed model predictive control of iron precipitation process by goethite based on dual iterative method, International Journal of Control, Automation and Systems, 17 (2019), 1233-1245.
doi: 10.1007/s12555-017-0742-6.
|
[12]
|
A. Mujahed, S. Alsabbah and I. Mujtaba, A predictive neural network-based cascade control for ph reactors, Mathematical Problems in Engineering: Theory, Methods and Applications, 5638632 (2016), 1-7.
|
[13]
|
I. F. Nusyirwan and C. Bil, Effect of uncertainties on UCAV trajectory optimisation using evolutionary programming, 2007 Information, Decision and Control, Australia, 219–223.
doi: 10.1109/IDC.2007.374553.
|
[14]
|
R. Dai, B-splines based optimal control solution, Aiaa Guidance, Navigation & Control Conference, California, 2010.
doi: 10.2514/6.2010-7888.
|
[15]
|
Y. Xu and N. Li, Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems, Bioinspiration & Biomimetics, 9 (2014), 036010.
|
[16]
|
Y. Xu and G. Basset, Virtual motion camouflage based phantom track generation through cooperative electronic combat air vehicles, Automatica, 46 (2010), 1454-1461.
doi: 10.1016/j.automatica.2010.05.027.
|
[17]
|
R. Strydom and M. Srinivasan, UAS stealth: Target pursuit at constant distance using a bio-inspired motion camouflage guidance law, Bioinspiration & Biomimetics, 12 (2017), 055002.
doi: 10.1088/1748-3190/aa7d65.
|
[18]
|
S. G. Defterli and Y. Xu, Virtual motion camouflage based visual servo control of a leaf picking mechanism, 11th Annual Dynamic Systems and Control Conference (DSCC 2018), Atlanta, (2018).
doi: 10.1115/DSCC2018-9042.
|
[19]
|
M. Develle and Y. Xu, Optimal attitude control allocation via the B-spline augmented virtual motion camouflage method, IEEE Transactions on Aerospace and Electronic Systems, 51 (2015), 1774-1780.
|
[20]
|
D. J. Kwak, B. Choi and D. Cho, Decentralized trajectory optimization using virtual motion camouflage and particle swarm optimization, Autonomous Robots, 38 (2015), 161-177.
doi: 10.1007/s10514-014-9399-7.
|
[21]
|
N. Chen, J. Y. Dai and W. H. Gui, A hybrid prediction model with a selectively updating strategy for iron removal process in zinc hydrometallurgy, Science China-Information Sciences, 63 (2020), 119205:1-119205:3.
doi: 10.1007/s10514-014-9399-7.
|
[22]
|
Y. J. Xu, C. Remeikas and K. Pham, Local pursuit strategy-inspired cooperative trajectory planning algorithm for a class of nonlinear constrained dynamical systems, Internat. J. Control, 87 (2014), 506-523.
doi: 10.1080/00207179.2013.845911.
|
[23]
|
Y. W. Liu, Z. Y. Lin, K. G. Zhao, J. Ye and X. D. Huang, Multiobjective gearshift optimization with Legendre pseudospectral method for seamless two-speed transmission, Mechanism and Machine Theory, 145 (2020), 103682.
doi: 10.1016/j.mechmachtheory.2019.103682.
|
[24]
|
I. Matychyn, Pursuit strategy of motion camouflage in dynamic games, Dyn. Games Appl., 10 (2020), 145-156.
doi: 10.1007/s13235-019-00316-0.
|
[25]
|
G. Basset, Y. J. Xu and N. Li, Fast trajectory planning via the B-spline augmented virtual motion camouflage approach, 2011 50th IEEE Conference on Decision and Control and European Control Conference, (2011).
doi: 10.1109/CDC.2011.6160835.
|
[26]
|
S. P. Kim and R. G. Melton, Constrained station relocation in geostationary equatorial orbit using a legendre pseudospectral method, Journal of Guidance, Control, and Dynamics, 38 (2014), 711-719.
doi: 10.2514/1.G000114.
|
[27]
|
S. B. Xu and S. B. Li, Legendre pseudospectral method for optimal control problem and its application, Jounal of Control and Decision, 29 (2014), 2113-2120.
|
[28]
|
S. W. Xie, Y. F. Xie and F. B. Li, Hybrid fuzzy control for the goethite process in zinc production plant combining type-1 and type-2 fuzzy logics, Neurocomputing, 366 (2019), 170-177.
doi: 10.1016/j.neucom.2019.06.089.
|
[29]
|
H. Zhang, W. N. Wang and G. Y. Xu, Optimal control of formation reconfiguration for multiple UAVs based on Legendre Pseudospectral Method, Chinese Control and Decision Conference, Chongqing, (2017), 6230-6235.
doi: 10.1109/CCDC.2017.7978292.
|
[30]
|
P. D. Laurie, Computation of Gauss-type quadrature formulas, J. Comput. Appl. Math., 127 (2001), 201-217.
doi: 10.1016/S0377-0427(00)00506-9.
|