[1]
|
K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-Linear Programming, With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Science, Vol. II. Stanford University Press, Stanford, Calif., 1958.
|
[2]
|
S. Bonettini and V. Ruggiero, On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration, J. Math. Imaging Vision, 44 (2012), 236-253.
doi: 10.1007/s10851-011-0324-9.
|
[3]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via ADMM, Found. Trends Mach. Learn., 3 (2010), 1-122.
|
[4]
|
J. Cai, E. J. Candés and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Opti., 20 (2010), 1956-1982.
doi: 10.1137/080738970.
|
[5]
|
J. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for compressed sensing, Math. Comput., 78 (2009), 1515-1536.
doi: 10.1090/S0025-5718-08-02189-3.
|
[6]
|
J. Cai, S. Osher and Z. Shen, Linearized Bregman iteration for frame based image deblurring, SIAM J. Imaging Sci., 2 (2009), 226-252.
doi: 10.1137/080733371.
|
[7]
|
X. Cai, D. Han and L. Xu, An improved first-order primal-dual algorithm with a new correction step, J. Global Optim., 57 (2013), 1419-1428.
doi: 10.1007/s10898-012-9999-8.
|
[8]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vison, 20 (2004), 89-97.
|
[9]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithms for convex problem with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[10]
|
A. Chambolle and T. Pock, On the ergodic convergence rates of a first order primal dual algorithm, Math. Program., 159 (2016), 253-287.
doi: 10.1007/s10107-015-0957-3.
|
[11]
|
R. Chan, S. Ma and J. Yang, Inertial primal dual algorithms for structured convex optimization, SIAM J. Imag. Sci., 8 (2015), 2239-2267.
|
[12]
|
T. Chan, G. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767.
|
[13]
|
Y. Chen, G. Lan and Y. Ouyang, Optimal primal-dual methods for a class of saddle point problems, SIAM J. Optim., 24 (2014), 1779-1814.
doi: 10.1137/130919362.
|
[14]
|
E. Esser, X. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for TV minimization, SIAM J. Imaging Sci., 3 (2010), 1015-1046.
doi: 10.1137/09076934X.
|
[15]
|
F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, Springer Verlag, New York, 2003.
|
[16]
|
T. Goldstein, M. Li and X. Yuan, Adaptive primal-dual splitting methods for statistical learning and image processing, Adv. Neural Inform. Process. Syst., (2015), 2089–2097.
|
[17]
|
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[18]
|
B. He, Y. You and X. Yuan, On the convergence of primal-dual hybrid gradient algorithm, SIAM J. Imag. Sci., 7 (2014), 2526-2537.
doi: 10.1137/140963467.
|
[19]
|
B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective, SIAM J. Imag. Sci., 5 (2012), 119-149.
doi: 10.1137/100814494.
|
[20]
|
B. He and X. Yuan, On the $O(1/n)$ convergence rate of Douglas-Rachford alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709.
doi: 10.1137/110836936.
|
[21]
|
H. He, J. Desai and K. Wang., A primal-dual prediction–correction algorithm for saddle point optimization, J. Global Optim., 66 (2016), 573-583.
doi: 10.1007/s10898-016-0437-1.
|
[22]
|
M. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appli., 4 (1969), 303-320.
doi: 10.1007/BF00927673.
|
[23]
|
N. Higham, Computing the nearest correlation matrix –-A problem from finance, IMA J. Numer. Anal., 22 (2002), 329-343.
doi: 10.1093/imanum/22.3.329.
|
[24]
|
Y. Nesterov, Gradient methods for minimizing composite objective function, Math. Program., 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5.
|
[25]
|
J. Pesquet and N. Pustelnik, A parallel inertial proximal optimization method, Pac. J. Optim., 8 (2012), 273-306.
|
[26]
|
M. Powell, A method for nonlinear constraints in minimization problems, In Optimization edited by R. Fletcher, Academic Press, (1969), 283–298.
|
[27]
|
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[28]
|
Y. Shen, Q. Li and J. Wu, A variable step-size primal-dual algorithm based on proximal point algorithm (in Chinese), Math. Numer. Sinica., 40 (2018), 85-95.
|
[29]
|
R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[30]
|
T. Valkonen, Inertial, corrected, primal-dual proximal splitting, SIAM J. Optim., 30 (2020), 1391-1420.
doi: 10.1137/18M1182851.
|
[31]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.
doi: 10.1137/080724265.
|
[32]
|
P. Weiss, L. Blanc-Feraud and G. Aubert, Efficient schemes for total variation minimization under constraints in image processing, SIAM J. Sci. Comput., 31 (2009), 2047-2080.
doi: 10.1137/070696143.
|
[33]
|
B. Zhang, Z. Zhu and S. Wang, A simple primal-dual method for total variation image restoration, J. Vis. Commun. Image R., 38 (2016), 814-823.
doi: 10.1016/j.jvcir.2016.04.025.
|
[34]
|
H. Zhang, J. Cai, L. Cheng and J. Zhu, Strongly convex programming for exact matrix completion and robust principal component analysis, Inver. Prob. Imaging, 6 (2012), 357-372.
doi: 10.3934/ipi.2012.6.357.
|
[35]
|
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 46 (2011), 20-46.
doi: 10.1007/s10915-010-9408-8.
|
[36]
|
M. Zhu and T. Chan, An Efficient Primal-dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08-34, UCLA, USA, 2008.
|