\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A relaxed parameter condition for the primal-dual hybrid gradient method for saddle-point problem

  • *Corresponding author: Yuan Shen

    *Corresponding author: Yuan Shen

The first author is supported by the National Natural Science Foundation of China Grant 71571096 and Nanjing Institute of Technology Research Start-up Foundation Grant YKJ201738. The second author is supported by the National Social Science Foundation of China under Grants 19AZD018, 20BGL028, 19BGL205

Abstract Full Text(HTML) Figure(7) / Table(2) Related Papers Cited by
  • The primal-dual hybrid gradient method and the primal-dual algorithm proposed by Chambolle and Pock are both efficient methods for solving saddle point problem. However, the convergence of both methods depends on some assumptions which can be too restrictive or impractical in real applications. In this paper, we propose a new parameter condition for the primal-dual hybrid gradient method. This improvement only requires either the primal or the dual objective function to be strongly convex. The relaxed parameter condition leads to convergence acceleration. Although counter-example shows that the PDHG method is not necessarily convergent with constant step size, it becomes convergent with our relaxed parameter condition. Preliminary experimental results show that PDHG method with our relaxed parameter condition is more efficient than several state-of-art methods.

    Mathematics Subject Classification: Primary: 90C30, 65K05; Secondary: 65K15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Comparison of parameter domain with different setting of $ \alpha $

    Figure 2.  Results on LASSO problem with different sample size $ m $ and feature No. $ n $

    Figure 3.  Results on LASSO problem with sparsity and balancing parameter

    Figure 4.  From left to right, up to bottom: the original figure 'sunflower.png($ 900\times824 $)', noisy figure with additive Gaussian noise(Standard deviation = 0.05), figure recovered by PDHG method($ \lambda = 8 $) and figure recovered by PDHG-R($ \lambda = 8 $)

    Figure 5.  From left to right, up to bottom: the original figure 'boat.png($ 512\times512 $)', noisy figure with additive Gaussian noise(Standard deviation = 0.05), figure recovered by PDHG method($ \lambda = 8 $) and figure recovered by PDHG-R($ \lambda = 8 $)

    Figure 6.  Results of image denoising with different images and $ \lambda $

    Figure 7.  Results of image denoising with different stepsize $ \tau $ and $ \sigma $

    Table 1.  Results on LASSO problem with different sample size $ m $ and feature No. $ n $

    100$ \times $1000 100$ \times $10000
    Tol=$ 10^{-4} $ Tol=$ 10^{-6} $ Tol=$ 10^{-4} $ Tol=$ 10^{-6} $
    PDHG 24 48 172 284
    CP 24 39 140 254
    CP-A 30 51 908 7993
    FISTA 35 78 217 553
    PDHG-R 23 36 124 202
    100$ \times $100000 10000$ \times $100000
    Tol=$ 10^{-4} $ Tol=$ 10^{-6} $ Tol=$ 10^{-4} $ Tol=$ 10^{-6} $
    PDHG 1279 2264 12 44
    CP 1181 1990 13 31
    CP-A 3977 >10000 33 48
    FISTA 639 1593 15 53
    PDHG-R 990 1723 13 30
     | Show Table
    DownLoad: CSV

    Table 2.  Results on LASSO problem with sparsity and balancing parameter

    s=5 s=20
    Tol=$ 10^{-4} $ Tol=$ 10^{-6} $ Tol=$ 10^{-4} $ Tol=$ 10^{-6} $
    PDHG 118 312 161 279
    CP 157 249 149 236
    CP-A 86 131 533 3450
    FISTA 149 298 142 447
    PDHG-R 142 225 114 207
    $ \beta $=0.1 $ \beta $=0.5
    Tol=$ 10^{-4} $ Tol=$ 10^{-6} $ Tol=$ 10^{-4} $ Tol=$ 10^{-6} $
    PDHG 193 307 180 290
    CP 185 278 166 218
    CP-A >10000 >10000 87 138
    FISTA 313 755 121 212
    PDHG-R 150 249 137 197
     | Show Table
    DownLoad: CSV
  • [1] K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-Linear Programming, With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Science, Vol. II. Stanford University Press, Stanford, Calif., 1958.
    [2] S. Bonettini and V. Ruggiero, On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration, J. Math. Imaging Vision, 44 (2012), 236-253.  doi: 10.1007/s10851-011-0324-9.
    [3] S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via ADMM, Found. Trends Mach. Learn., 3 (2010), 1-122. 
    [4] J. CaiE. J. Candés and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Opti., 20 (2010), 1956-1982.  doi: 10.1137/080738970.
    [5] J. CaiS. Osher and Z. Shen, Linearized Bregman iterations for compressed sensing, Math. Comput., 78 (2009), 1515-1536.  doi: 10.1090/S0025-5718-08-02189-3.
    [6] J. CaiS. Osher and Z. Shen, Linearized Bregman iteration for frame based image deblurring, SIAM J. Imaging Sci., 2 (2009), 226-252.  doi: 10.1137/080733371.
    [7] X. CaiD. Han and L. Xu, An improved first-order primal-dual algorithm with a new correction step, J. Global Optim., 57 (2013), 1419-1428.  doi: 10.1007/s10898-012-9999-8.
    [8] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vison, 20 (2004), 89-97. 
    [9] A. Chambolle and T. Pock, A first-order primal-dual algorithms for convex problem with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [10] A. Chambolle and T. Pock, On the ergodic convergence rates of a first order primal dual algorithm, Math. Program., 159 (2016), 253-287.  doi: 10.1007/s10107-015-0957-3.
    [11] R. ChanS. Ma and J. Yang, Inertial primal dual algorithms for structured convex optimization, SIAM J. Imag. Sci., 8 (2015), 2239-2267. 
    [12] T. ChanG. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.  doi: 10.1137/S1064827596299767.
    [13] Y. ChenG. Lan and Y. Ouyang, Optimal primal-dual methods for a class of saddle point problems, SIAM J. Optim., 24 (2014), 1779-1814.  doi: 10.1137/130919362.
    [14] E. EsserX. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for TV minimization, SIAM J. Imaging Sci., 3 (2010), 1015-1046.  doi: 10.1137/09076934X.
    [15] F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, Springer Verlag, New York, 2003.
    [16] T. Goldstein, M. Li and X. Yuan, Adaptive primal-dual splitting methods for statistical learning and image processing, Adv. Neural Inform. Process. Syst., (2015), 2089–2097.
    [17] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.  doi: 10.1137/080725891.
    [18] B. HeY. You and X. Yuan, On the convergence of primal-dual hybrid gradient algorithm, SIAM J. Imag. Sci., 7 (2014), 2526-2537.  doi: 10.1137/140963467.
    [19] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective, SIAM J. Imag. Sci., 5 (2012), 119-149.  doi: 10.1137/100814494.
    [20] B. He and X. Yuan, On the $O(1/n)$ convergence rate of Douglas-Rachford alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709.  doi: 10.1137/110836936.
    [21] H. HeJ. Desai and K. Wang., A primal-dual prediction–correction algorithm for saddle point optimization, J. Global Optim., 66 (2016), 573-583.  doi: 10.1007/s10898-016-0437-1.
    [22] M. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appli., 4 (1969), 303-320.  doi: 10.1007/BF00927673.
    [23] N. Higham, Computing the nearest correlation matrix –-A problem from finance, IMA J. Numer. Anal., 22 (2002), 329-343.  doi: 10.1093/imanum/22.3.329.
    [24] Y. Nesterov, Gradient methods for minimizing composite objective function, Math. Program., 140 (2013), 125-161.  doi: 10.1007/s10107-012-0629-5.
    [25] J. Pesquet and N. Pustelnik, A parallel inertial proximal optimization method, Pac. J. Optim., 8 (2012), 273-306. 
    [26] M. Powell, A method for nonlinear constraints in minimization problems, In Optimization edited by R. Fletcher, Academic Press, (1969), 283–298.
    [27] L. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [28] Y. ShenQ. Li and J. Wu, A variable step-size primal-dual algorithm based on proximal point algorithm (in Chinese), Math. Numer. Sinica., 40 (2018), 85-95. 
    [29] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.  doi: 10.1111/j.2517-6161.1996.tb02080.x.
    [30] T. Valkonen, Inertial, corrected, primal-dual proximal splitting, SIAM J. Optim., 30 (2020), 1391-1420.  doi: 10.1137/18M1182851.
    [31] Y. WangJ. YangW. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.  doi: 10.1137/080724265.
    [32] P. WeissL. Blanc-Feraud and G. Aubert, Efficient schemes for total variation minimization under constraints in image processing, SIAM J. Sci. Comput., 31 (2009), 2047-2080.  doi: 10.1137/070696143.
    [33] B. ZhangZ. Zhu and S. Wang, A simple primal-dual method for total variation image restoration, J. Vis. Commun. Image R., 38 (2016), 814-823.  doi: 10.1016/j.jvcir.2016.04.025.
    [34] H. ZhangJ. CaiL. Cheng and J. Zhu, Strongly convex programming for exact matrix completion and robust principal component analysis, Inver. Prob. Imaging, 6 (2012), 357-372.  doi: 10.3934/ipi.2012.6.357.
    [35] X. ZhangM. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 46 (2011), 20-46.  doi: 10.1007/s10915-010-9408-8.
    [36] M. Zhu and T. Chan, An Efficient Primal-dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08-34, UCLA, USA, 2008.
  • 加载中

Figures(7)

Tables(2)

SHARE

Article Metrics

HTML views(704) PDF downloads(458) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return