
-
Previous Article
An orthogonal equivalence theorem for third order tensors
- JIMO Home
- This Issue
-
Next Article
Optimal financing strategy in a closed-loop supply chain for construction machinery remanufacturing with emissions abatement
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Dynamic virtual cellular reconfiguration for capacity planning of market-oriented production systems
1. | Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan city, Hubei province, China |
2. | School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou city, China |
Market-oriented production systems generally have the characteristics of multi-product and small-batch production. Dynamic virtual cellular manufacturing systems create virtual manufacturing cells periodically in a planning horizon to respond to changing demands flexibly and quickly, and thus are suitable for production planning problems of market-oriented production systems. In the current research, we propose a dynamic virtual cell reconfiguration framework under a dynamic environment with unstable demands and multiple planning cycles. In this framework, we formulate a two-phase dynamic virtual cell formation (DVCF) model. In the first phase, the proposed model aims to maximize processing similarity and balance the workload in the system. In the second phase, we consider the objective of reconfiguration stability based on the first phase model. To address the proposed model, we design a hybrid metaheuristic named Lévy-NSGA-Ⅱ, and perform various computational experiments to examine the performance of the proposed algorithm. Results of experiments indicate that the proposed Lévy-NSGA-Ⅱ based algorithm outperforms multi-objective cuckoo search (MOCS) and NSGA-Ⅱ in solution quality and optimal solution size.
References:
[1] |
T. Blickle and L. Thiele,
A comparison of selection schemes used in evolutionary algorithms, Evolutionary Computation, 4 (1996), 361-394.
doi: 10.1162/evco.1996.4.4.361. |
[2] |
M. Bortolini, E. Ferrari, F. G. Galizia and A. Regattieri,
An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints, Journal of Manufacturing Systems, 58 (2021), 442-451.
doi: 10.1016/j.jmsy.2021.01.001. |
[3] |
C. W. Chou, C. F. Chien and M. Gen,
A multiobjective hybrid genetic algorithm for tft-lcd module assembly scheduling, IEEE Transactions on Automation Science and Engineering, 11 (2014), 692-705.
doi: 10.1109/TASE.2014.2316193. |
[4] |
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[5] |
K. Deep and P. K. Singh,
Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm, Journal of Manufacturing Systems, 35 (2015), 155-163.
doi: 10.1016/j.jmsy.2014.09.008. |
[6] |
I. Eguia, J. C. Molina, S. Lozano and J. Racero,
Cell design and multi-period machine loading in cellular reconfigurable manufacturing systems with alternative routing, International Journal of Production Research, 55 (2017), 2775-2790.
doi: 10.1080/00207543.2016.1193673. |
[7] |
B. Erfani, S. Ebrahimnejad and A. Moosavi,
An integrated dynamic facility layout and job shop scheduling problem: A hybrid nsga-ii and local search algorithm, J. Ind. Manag. Optim., 16 (2020), 1801-1834.
doi: 10.3934/jimo.2019030. |
[8] |
J. Fan and D. Feng,
Design of cellular manufacturing system with quasi-dynamic dual resource using multi-objective ga, International Journal of Production Research, 51 (2013), 4134-4154.
doi: 10.1080/00207543.2012.748228. |
[9] |
H. Feng, W. Da, L. Xi, E. Pan and T. Xia,
Solving the integrated cell formation and worker assignment problem using particle swarm optimization and linear programming, Computers & Industrial Engineering, 110 (2017), 126-137.
doi: 10.1016/j.cie.2017.05.038. |
[10] |
R. Y. Fung, F. Liang, Z. Jiang and T. Wong,
A multi-stage methodology for virtual cell formation oriented agile manufacturing, The International Journal of Advanced Manufacturing Technology, 36 (2008), 798-810.
doi: 10.1007/s00170-006-0871-1. |
[11] |
H. Guo, M. Chen, K. Mohamed, T. Qu, S. Wang and J. Li,
A digital twin-based flexible cellular manufacturing for optimization of air conditioner line, Journal of Manufacturing Systems, 58 (2021), 65-78.
doi: 10.1016/j.jmsy.2020.07.012. |
[12] |
W. Hachicha, F. Masmoudi and M. Haddar,
Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach, The International Journal of Advanced Manufacturing Technology, 36 (2008), 1157-1169.
doi: 10.1007/s00170-007-0928-9. |
[13] |
M. Hamedi, G. Esmaeilian, N. Ismail and M. Ariffin,
A survey on formation of virtual cellular manufacturing systems (vcmss) and related issues, Scientific Research and Essays, 7 (2012), 3316-3328.
|
[14] |
W. Han, Y. Yu, L. Gao, J. Fang and Z. Li,
Virtual cellular inheritance reconfiguration driven by random arrival orders and time window, Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 24 (2018), 1317-1326.
|
[15] |
A. Hosseini, M. M. Paydar, I. Mahdavi and J. Jouzdani,
Cell forming and cell balancing of virtual cellular manufacturing systems with alternative processing routes using genetic algorithm, Journal of Optimization in Industrial Engineering, 9 (2016), 41-51.
|
[16] |
M. Imran, C. Kang, Y. H. Lee, M. Jahanzaib and H. Aziz,
Cell formation in a cellular manufacturing system using simulation integrated hybrid genetic algorithm, Computers & Industrial Engineering, 105 (2017), 123-135.
doi: 10.1016/j.cie.2016.12.028. |
[17] |
B. Karoum and Y. B. Elbenani,
Optimization of the material handling costs and the machine reliability in cellular manufacturing system using cuckoo search algorithm, Neural Computing and Applications, 31 (2019), 3743-3757.
doi: 10.1007/s00521-017-3302-3. |
[18] |
R. Kia, N. Javadian, M. M. Paydar and M. Saidi-Mehrabad, A simulated annealing for intra-cell layout design of dynamic cellular manufacturing systems with route selection, purchasing machines and cell reconfiguration, Asia-Pac. J. Oper. Res., 30 (2013), 1350004, 41 pp.
doi: 10.1142/S0217595913500048. |
[19] |
A. Kusiak,
The generalized group technology concept, International journal of production research, 25 (1987), 561-569.
doi: 10.1080/00207548708919861. |
[20] |
J. Li, A. Wang and C. Tang,
Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm, The International Journal of Advanced Manufacturing Technology, 74 (2014), 47-64.
doi: 10.1007/s00170-014-5987-0. |
[21] |
J. Q. Li, Q. K. Pan and M. F. Tasgetiren,
A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities, Appl. Math. Model., 38 (2014), 1111-1132.
doi: 10.1016/j.apm.2013.07.038. |
[22] |
J. Q. Li, Q. K. Pan and F. T. Wang,
A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem, Applied Soft Computing, 24 (2014), 63-77.
doi: 10.1016/j.asoc.2014.07.005. |
[23] |
J. Q. Li, H. Y. Sang, Y. Y. Han, C. G. Wang and K. Z. Gao,
Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions, Journal of Cleaner Production, 181 (2018), 584-598.
doi: 10.1016/j.jclepro.2018.02.004. |
[24] |
C. Liu, J. Wang and M. Zhou,
Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach, IEEE Transactions on Automation Science and Engineering, 16 (2018), 1301-1314.
doi: 10.1109/TASE.2018.2878653. |
[25] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur,
Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems, International Journal of Production Research, 49 (2011), 6517-6537.
doi: 10.1080/00207543.2010.524902. |
[26] |
P. M. Mahdi and S.-M. Mohammad,
A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection, The International Journal of Advanced Manufacturing Technology, 92 (2017), 3001-3017.
|
[27] |
M. Mohammadi and K. Forghani,
A hybrid method based on genetic algorithm and dynamic programming for solving a bi-objective cell formation problem considering alternative process routings and machine duplication, Applied Soft Computing, 53 (2017), 97-110.
doi: 10.1016/j.asoc.2016.12.039. |
[28] |
M. Moradgholi, M. M. Paydar, I. Mahdavi and J. Jouzdani,
A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem, Journal of Industrial Engineering International, 12 (2016), 343-359.
doi: 10.1007/s40092-016-0151-0. |
[29] |
J. S. Morris and R. J. Tersine,
A simulation analysis of factors influencing the attractiveness of group technology cellular layouts, Management Science, 36 (1990), 1567-1578.
|
[30] |
F. Niakan, A. Baboli, T. Moyaux and V. Botta-Genoulaz,
A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment, Journal of Manufacturing Systems, 38 (2016), 46-62.
doi: 10.1016/j.jmsy.2015.11.001. |
[31] |
E. Nikoofarid and A. Aalaei,
Production planning and worker assignment in a dynamic virtual cellular manufacturing system, International Journal of Management Science and Engineering Management, 7 (2012), 89-95.
doi: 10.1080/17509653.2012.10671211. |
[32] |
Q. K. Pan, L. Wang and B. Qian,
A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems, Comput. Oper. Res., 36 (2009), 2498-2511.
doi: 10.1016/j.cor.2008.10.008. |
[33] |
M. Rabbani, H. Farrokhi-Asl and M. Ravanbakhsh,
Dynamic cellular manufacturing system considering machine failure and workload balance, Journal of Industrial Engineering International, 15 (2019), 25-40.
doi: 10.1007/s40092-018-0261-y. |
[34] |
V. Rahimi, J. Arkat and H. Farughi,
A vibration damping optimization algorithm for the integrated problem of cell formation, cellular scheduling, and intercellular layout, Computers & Industrial Engineering, 143 (2020), 106439.
doi: 10.1016/j.cie.2020.106439. |
[35] |
J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam and F. Jolai,
A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system, Applied Soft Computing, 11 (2011), 4195-4202.
doi: 10.1016/j.asoc.2011.03.013. |
[36] |
D. Rogers and S. Shafer, Measuring cellular manufacturing performance, In Manufacturing Research and Technology, 24 1995,147–165.
doi: 10.1016/S1572-4417(06)80040-9. |
[37] |
B. Sarker,
Grouping efficiency measures in cellular manufacturing: A survey and critical review, International Journal of Production Research, 37 (1999), 285-314.
doi: 10.1080/002075499191779. |
[38] |
G. Syswerda, Uniform crossover in genetic algorithms, In Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, (1989), 2–9. |
[39] |
G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. Da Luz, E. Raposo and H. E. Stanley,
Optimizing the success of random searches, Nature, 401 (1999), 911-914.
doi: 10.1038/44831. |
[40] |
G. Xue and O. F. Offodile,
Integrated optimization of dynamic cell formation and hierarchical production planning problems, Computers & Industrial Engineering, 139 (2020), 106155.
doi: 10.1016/j.cie.2019.106155. |
[41] |
X. S. Yang and S. Deb, Cuckoo search via lévy flights, In 2009 World Congress on Nature & Biologically inspired computing (NaBIC), Ieee, (2009), 210–214. |
show all references
References:
[1] |
T. Blickle and L. Thiele,
A comparison of selection schemes used in evolutionary algorithms, Evolutionary Computation, 4 (1996), 361-394.
doi: 10.1162/evco.1996.4.4.361. |
[2] |
M. Bortolini, E. Ferrari, F. G. Galizia and A. Regattieri,
An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints, Journal of Manufacturing Systems, 58 (2021), 442-451.
doi: 10.1016/j.jmsy.2021.01.001. |
[3] |
C. W. Chou, C. F. Chien and M. Gen,
A multiobjective hybrid genetic algorithm for tft-lcd module assembly scheduling, IEEE Transactions on Automation Science and Engineering, 11 (2014), 692-705.
doi: 10.1109/TASE.2014.2316193. |
[4] |
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[5] |
K. Deep and P. K. Singh,
Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm, Journal of Manufacturing Systems, 35 (2015), 155-163.
doi: 10.1016/j.jmsy.2014.09.008. |
[6] |
I. Eguia, J. C. Molina, S. Lozano and J. Racero,
Cell design and multi-period machine loading in cellular reconfigurable manufacturing systems with alternative routing, International Journal of Production Research, 55 (2017), 2775-2790.
doi: 10.1080/00207543.2016.1193673. |
[7] |
B. Erfani, S. Ebrahimnejad and A. Moosavi,
An integrated dynamic facility layout and job shop scheduling problem: A hybrid nsga-ii and local search algorithm, J. Ind. Manag. Optim., 16 (2020), 1801-1834.
doi: 10.3934/jimo.2019030. |
[8] |
J. Fan and D. Feng,
Design of cellular manufacturing system with quasi-dynamic dual resource using multi-objective ga, International Journal of Production Research, 51 (2013), 4134-4154.
doi: 10.1080/00207543.2012.748228. |
[9] |
H. Feng, W. Da, L. Xi, E. Pan and T. Xia,
Solving the integrated cell formation and worker assignment problem using particle swarm optimization and linear programming, Computers & Industrial Engineering, 110 (2017), 126-137.
doi: 10.1016/j.cie.2017.05.038. |
[10] |
R. Y. Fung, F. Liang, Z. Jiang and T. Wong,
A multi-stage methodology for virtual cell formation oriented agile manufacturing, The International Journal of Advanced Manufacturing Technology, 36 (2008), 798-810.
doi: 10.1007/s00170-006-0871-1. |
[11] |
H. Guo, M. Chen, K. Mohamed, T. Qu, S. Wang and J. Li,
A digital twin-based flexible cellular manufacturing for optimization of air conditioner line, Journal of Manufacturing Systems, 58 (2021), 65-78.
doi: 10.1016/j.jmsy.2020.07.012. |
[12] |
W. Hachicha, F. Masmoudi and M. Haddar,
Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach, The International Journal of Advanced Manufacturing Technology, 36 (2008), 1157-1169.
doi: 10.1007/s00170-007-0928-9. |
[13] |
M. Hamedi, G. Esmaeilian, N. Ismail and M. Ariffin,
A survey on formation of virtual cellular manufacturing systems (vcmss) and related issues, Scientific Research and Essays, 7 (2012), 3316-3328.
|
[14] |
W. Han, Y. Yu, L. Gao, J. Fang and Z. Li,
Virtual cellular inheritance reconfiguration driven by random arrival orders and time window, Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 24 (2018), 1317-1326.
|
[15] |
A. Hosseini, M. M. Paydar, I. Mahdavi and J. Jouzdani,
Cell forming and cell balancing of virtual cellular manufacturing systems with alternative processing routes using genetic algorithm, Journal of Optimization in Industrial Engineering, 9 (2016), 41-51.
|
[16] |
M. Imran, C. Kang, Y. H. Lee, M. Jahanzaib and H. Aziz,
Cell formation in a cellular manufacturing system using simulation integrated hybrid genetic algorithm, Computers & Industrial Engineering, 105 (2017), 123-135.
doi: 10.1016/j.cie.2016.12.028. |
[17] |
B. Karoum and Y. B. Elbenani,
Optimization of the material handling costs and the machine reliability in cellular manufacturing system using cuckoo search algorithm, Neural Computing and Applications, 31 (2019), 3743-3757.
doi: 10.1007/s00521-017-3302-3. |
[18] |
R. Kia, N. Javadian, M. M. Paydar and M. Saidi-Mehrabad, A simulated annealing for intra-cell layout design of dynamic cellular manufacturing systems with route selection, purchasing machines and cell reconfiguration, Asia-Pac. J. Oper. Res., 30 (2013), 1350004, 41 pp.
doi: 10.1142/S0217595913500048. |
[19] |
A. Kusiak,
The generalized group technology concept, International journal of production research, 25 (1987), 561-569.
doi: 10.1080/00207548708919861. |
[20] |
J. Li, A. Wang and C. Tang,
Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm, The International Journal of Advanced Manufacturing Technology, 74 (2014), 47-64.
doi: 10.1007/s00170-014-5987-0. |
[21] |
J. Q. Li, Q. K. Pan and M. F. Tasgetiren,
A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities, Appl. Math. Model., 38 (2014), 1111-1132.
doi: 10.1016/j.apm.2013.07.038. |
[22] |
J. Q. Li, Q. K. Pan and F. T. Wang,
A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem, Applied Soft Computing, 24 (2014), 63-77.
doi: 10.1016/j.asoc.2014.07.005. |
[23] |
J. Q. Li, H. Y. Sang, Y. Y. Han, C. G. Wang and K. Z. Gao,
Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions, Journal of Cleaner Production, 181 (2018), 584-598.
doi: 10.1016/j.jclepro.2018.02.004. |
[24] |
C. Liu, J. Wang and M. Zhou,
Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach, IEEE Transactions on Automation Science and Engineering, 16 (2018), 1301-1314.
doi: 10.1109/TASE.2018.2878653. |
[25] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur,
Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems, International Journal of Production Research, 49 (2011), 6517-6537.
doi: 10.1080/00207543.2010.524902. |
[26] |
P. M. Mahdi and S.-M. Mohammad,
A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection, The International Journal of Advanced Manufacturing Technology, 92 (2017), 3001-3017.
|
[27] |
M. Mohammadi and K. Forghani,
A hybrid method based on genetic algorithm and dynamic programming for solving a bi-objective cell formation problem considering alternative process routings and machine duplication, Applied Soft Computing, 53 (2017), 97-110.
doi: 10.1016/j.asoc.2016.12.039. |
[28] |
M. Moradgholi, M. M. Paydar, I. Mahdavi and J. Jouzdani,
A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem, Journal of Industrial Engineering International, 12 (2016), 343-359.
doi: 10.1007/s40092-016-0151-0. |
[29] |
J. S. Morris and R. J. Tersine,
A simulation analysis of factors influencing the attractiveness of group technology cellular layouts, Management Science, 36 (1990), 1567-1578.
|
[30] |
F. Niakan, A. Baboli, T. Moyaux and V. Botta-Genoulaz,
A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment, Journal of Manufacturing Systems, 38 (2016), 46-62.
doi: 10.1016/j.jmsy.2015.11.001. |
[31] |
E. Nikoofarid and A. Aalaei,
Production planning and worker assignment in a dynamic virtual cellular manufacturing system, International Journal of Management Science and Engineering Management, 7 (2012), 89-95.
doi: 10.1080/17509653.2012.10671211. |
[32] |
Q. K. Pan, L. Wang and B. Qian,
A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems, Comput. Oper. Res., 36 (2009), 2498-2511.
doi: 10.1016/j.cor.2008.10.008. |
[33] |
M. Rabbani, H. Farrokhi-Asl and M. Ravanbakhsh,
Dynamic cellular manufacturing system considering machine failure and workload balance, Journal of Industrial Engineering International, 15 (2019), 25-40.
doi: 10.1007/s40092-018-0261-y. |
[34] |
V. Rahimi, J. Arkat and H. Farughi,
A vibration damping optimization algorithm for the integrated problem of cell formation, cellular scheduling, and intercellular layout, Computers & Industrial Engineering, 143 (2020), 106439.
doi: 10.1016/j.cie.2020.106439. |
[35] |
J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam and F. Jolai,
A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system, Applied Soft Computing, 11 (2011), 4195-4202.
doi: 10.1016/j.asoc.2011.03.013. |
[36] |
D. Rogers and S. Shafer, Measuring cellular manufacturing performance, In Manufacturing Research and Technology, 24 1995,147–165.
doi: 10.1016/S1572-4417(06)80040-9. |
[37] |
B. Sarker,
Grouping efficiency measures in cellular manufacturing: A survey and critical review, International Journal of Production Research, 37 (1999), 285-314.
doi: 10.1080/002075499191779. |
[38] |
G. Syswerda, Uniform crossover in genetic algorithms, In Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, (1989), 2–9. |
[39] |
G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. Da Luz, E. Raposo and H. E. Stanley,
Optimizing the success of random searches, Nature, 401 (1999), 911-914.
doi: 10.1038/44831. |
[40] |
G. Xue and O. F. Offodile,
Integrated optimization of dynamic cell formation and hierarchical production planning problems, Computers & Industrial Engineering, 139 (2020), 106155.
doi: 10.1016/j.cie.2019.106155. |
[41] |
X. S. Yang and S. Deb, Cuckoo search via lévy flights, In 2009 World Congress on Nature & Biologically inspired computing (NaBIC), Ieee, (2009), 210–214. |














Indices | |
part types, |
|
process routings, |
|
machine types, |
|
virtual cells, |
|
formation periods | |
Input parameters | |
number of part types in period |
|
number of process routings for part type |
|
M | number of machine types |
number of machines included in machine type |
|
upper bounds of virtual cells | |
lower bounds of virtual cells | |
demand for part type |
|
production capacity of each machine of type |
|
1, if |
|
processing time of |
|
the similarity coefficient between |
|
number of machines of type |
|
Variables | |
number of virtual cells in period |
|
1, part type |
|
number of machines of type |
|
number of machines of type |
Indices | |
part types, |
|
process routings, |
|
machine types, |
|
virtual cells, |
|
formation periods | |
Input parameters | |
number of part types in period |
|
number of process routings for part type |
|
M | number of machine types |
number of machines included in machine type |
|
upper bounds of virtual cells | |
lower bounds of virtual cells | |
demand for part type |
|
production capacity of each machine of type |
|
1, if |
|
processing time of |
|
the similarity coefficient between |
|
number of machines of type |
|
Variables | |
number of virtual cells in period |
|
1, part type |
|
number of machines of type |
|
number of machines of type |
Parameter | Generation pattern | Parameter | Generation pattern |
8 | U [1,3] | ||
U [2J, 3J] | U [2,6] | ||
Random{3, 4} | U 10 * [4,32] | ||
Random{2, 3} | U 100 * [10,30] | ||
U [0, 10] |
Parameter | Generation pattern | Parameter | Generation pattern |
8 | U [1,3] | ||
U [2J, 3J] | U [2,6] | ||
Random{3, 4} | U 10 * [4,32] | ||
Random{2, 3} | U 100 * [10,30] | ||
U [0, 10] |
Size1 | Size2 | Size3 | Size4 | Size5 | Size6 | |
(15*40*28) | (18*49*33) | (21*55*39) | (24*60*46) | (27*69*54) | (30*76*62) | |
A1 | A2 | A3 | A4 | A5 | A6 | |
B1 | B2 | B3 | B4 | B5 | B6 |
Size1 | Size2 | Size3 | Size4 | Size5 | Size6 | |
(15*40*28) | (18*49*33) | (21*55*39) | (24*60*46) | (27*69*54) | (30*76*62) | |
A1 | A2 | A3 | A4 | A5 | A6 | |
B1 | B2 | B3 | B4 | B5 | B6 |
Solution number | Lévy-NSGA-Ⅱ | Solution number | MOCS | Solution number | NSGA-Ⅱ | |||
Dissimilarity coefficient | Workload balance | Dissimilarity coefficient | Workload balance | Dissimilarity coefficient | Workload balance | |||
1 | 7.533333 | 2.022256 | 1 | 7.939286 | 1.976695 | 1 | 7.804762 | 2.074396 |
2 | 7.719048 | 1.921483 | 2 | 8.025000 | 1.830073 | 2 | 7.829762 | 1.976695 |
3 | 7.833333 | 1.855261 | 3 | 8.092063 | 1.802253 | 3 | 7.876190 | 1.918146 |
4 | 7.901190 | 1.851695 | 4 | 8.177778 | 1.629786 | 4 | 7.954762 | 1.830073 |
5 | 7.933730 | 1.835300 | 5 | 8.344444 | 1.503174 | 5 | 8.005159 | 1.694708 |
6 | 7.954762 | 1.830073 | 6 | 8.563492 | 1.457544 | 6 | 8.229762 | 1.661732 |
7 | 8.005159 | 1.694708 | 7 | 8.683730 | 1.391009 | 7 | 8.308333 | 1.653314 |
8 | 8.254762 | 1.629786 | 8 | 8.790476 | 1.266009 | 8 | 8.379762 | 1.559564 |
9 | 8.282143 | 1.490863 | 9 | 9.265476 | 1.224086 | 9 | 8.430159 | 1.503174 |
10 | 8.560714 | 1.457544 | 10 | 9.383333 | 1.167368 | 10 | 8.626190 | 1.470198 |
11 | 8.711111 | 1.391009 | 11 | 9.487302 | 1.131726 | 11 | 8.656349 | 1.391009 |
12 | 8.717063 | 1.297040 | 12 | 8.727778 | 1.266009 | |||
13 | 8.727778 | 1.266009 | 13 | 9.080556 | 1.224086 | |||
14 | 9.059524 | 1.224086 | 14 | 9.364286 | 1.131726 | |||
15 | 9.255952 | 1.167368 | ||||||
16 | 9.267857 | 1.131726 |
Solution number | Lévy-NSGA-Ⅱ | Solution number | MOCS | Solution number | NSGA-Ⅱ | |||
Dissimilarity coefficient | Workload balance | Dissimilarity coefficient | Workload balance | Dissimilarity coefficient | Workload balance | |||
1 | 7.533333 | 2.022256 | 1 | 7.939286 | 1.976695 | 1 | 7.804762 | 2.074396 |
2 | 7.719048 | 1.921483 | 2 | 8.025000 | 1.830073 | 2 | 7.829762 | 1.976695 |
3 | 7.833333 | 1.855261 | 3 | 8.092063 | 1.802253 | 3 | 7.876190 | 1.918146 |
4 | 7.901190 | 1.851695 | 4 | 8.177778 | 1.629786 | 4 | 7.954762 | 1.830073 |
5 | 7.933730 | 1.835300 | 5 | 8.344444 | 1.503174 | 5 | 8.005159 | 1.694708 |
6 | 7.954762 | 1.830073 | 6 | 8.563492 | 1.457544 | 6 | 8.229762 | 1.661732 |
7 | 8.005159 | 1.694708 | 7 | 8.683730 | 1.391009 | 7 | 8.308333 | 1.653314 |
8 | 8.254762 | 1.629786 | 8 | 8.790476 | 1.266009 | 8 | 8.379762 | 1.559564 |
9 | 8.282143 | 1.490863 | 9 | 9.265476 | 1.224086 | 9 | 8.430159 | 1.503174 |
10 | 8.560714 | 1.457544 | 10 | 9.383333 | 1.167368 | 10 | 8.626190 | 1.470198 |
11 | 8.711111 | 1.391009 | 11 | 9.487302 | 1.131726 | 11 | 8.656349 | 1.391009 |
12 | 8.717063 | 1.297040 | 12 | 8.727778 | 1.266009 | |||
13 | 8.727778 | 1.266009 | 13 | 9.080556 | 1.224086 | |||
14 | 9.059524 | 1.224086 | 14 | 9.364286 | 1.131726 | |||
15 | 9.255952 | 1.167368 | ||||||
16 | 9.267857 | 1.131726 |
Problem No | Pareto distance |
Pareto distance |
Pareto distance |
||||||
MOCS | NSGA-Ⅱ | Lévy-NSGA-Ⅱ | MOCS | NSGA-Ⅱ | Lévy-NSGA-Ⅱ | MOCS | NSGA-Ⅱ | Lévy-NSGA-Ⅱ | |
A1 | 0.1016 | 0.0484 | 0.0158 | 6 | 8 | 10 | 0.0367 | 0.0333 | 0.0333 |
A2 | 0.0754 | 0.0346 | 0.0286 | 2 | 6 | 10 | 0.0367 | 0.0400 | 0.0333 |
A3 | 0.1460 | 0.0644 | 0.0030 | 1 | 4 | 14 | 0.0367 | 0.0467 | 0.0533 |
A4 | 0.2443 | 0.5967 | 0.0014 | 0 | 1 | 10 | 0.0367 | 0.0267 | 0.0400 |
A5 | 2.0610 | 2.3134 | 0.0001 | 0 | 2 | 18 | 0.0367 | 0.0233 | 0.0633 |
A6 | 2.3025 | 2.7586 | 0.0000 | 0 | 0 | 16 | 0.0500 | 0.0500 | 0.0533 |
B1 | 0.4266 | 1.5974 | 0.0506 | 32 | 27 | 42 | 0.1333 | 0.1000 | 0.1467 |
B2 | 1.0217 | 2.0321 | 0.0123 | 18 | 18 | 51 | 0.1067 | 0.1167 | 0.1800 |
B3 | 0.3373 | 0.4506 | 0.2616 | 50 | 67 | 107 | 0.2600 | 0.3000 | 0.3900 |
B4 | 0.7522 | 1.6053 | 0.5043 | 48 | 20 | 67 | 0.3600 | 0.3633 | 0.2800 |
B5 | 1.5456 | 3.0284 | 0.4457 | 26 | 43 | 42 | 0.2267 | 0.2233 | 0.2600 |
B6 | 0.8931 | 2.0602 | 0.3225 | 29 | 16 | 100 | 0.2700 | 0.2400 | 0.4267 |
Problem No | Pareto distance |
Pareto distance |
Pareto distance |
||||||
MOCS | NSGA-Ⅱ | Lévy-NSGA-Ⅱ | MOCS | NSGA-Ⅱ | Lévy-NSGA-Ⅱ | MOCS | NSGA-Ⅱ | Lévy-NSGA-Ⅱ | |
A1 | 0.1016 | 0.0484 | 0.0158 | 6 | 8 | 10 | 0.0367 | 0.0333 | 0.0333 |
A2 | 0.0754 | 0.0346 | 0.0286 | 2 | 6 | 10 | 0.0367 | 0.0400 | 0.0333 |
A3 | 0.1460 | 0.0644 | 0.0030 | 1 | 4 | 14 | 0.0367 | 0.0467 | 0.0533 |
A4 | 0.2443 | 0.5967 | 0.0014 | 0 | 1 | 10 | 0.0367 | 0.0267 | 0.0400 |
A5 | 2.0610 | 2.3134 | 0.0001 | 0 | 2 | 18 | 0.0367 | 0.0233 | 0.0633 |
A6 | 2.3025 | 2.7586 | 0.0000 | 0 | 0 | 16 | 0.0500 | 0.0500 | 0.0533 |
B1 | 0.4266 | 1.5974 | 0.0506 | 32 | 27 | 42 | 0.1333 | 0.1000 | 0.1467 |
B2 | 1.0217 | 2.0321 | 0.0123 | 18 | 18 | 51 | 0.1067 | 0.1167 | 0.1800 |
B3 | 0.3373 | 0.4506 | 0.2616 | 50 | 67 | 107 | 0.2600 | 0.3000 | 0.3900 |
B4 | 0.7522 | 1.6053 | 0.5043 | 48 | 20 | 67 | 0.3600 | 0.3633 | 0.2800 |
B5 | 1.5456 | 3.0284 | 0.4457 | 26 | 43 | 42 | 0.2267 | 0.2233 | 0.2600 |
B6 | 0.8931 | 2.0602 | 0.3225 | 29 | 16 | 100 | 0.2700 | 0.2400 | 0.4267 |
Parts | Routes | Operation | Demand | Time | Parts | Routes | Operation | Demand | Time |
P1 | R1 | 1 | 5, 7 | 360 | P7 | R3 | 2 | 90 | |
8 | 90 | 8 | 120 | ||||||
6 | 160 | 5 | 160 | ||||||
2 | 180 | 2 | 50 | ||||||
R2 | 8 | 90 | P8 | R1 | 1 | 4, 7 | 360 | ||
5 | 180 | 7 | 90 | ||||||
1 | 360 | 2 | 160 | ||||||
6 | 160 | 4 | 180 | ||||||
2 | 180 | 6 | 90 | ||||||
P2 | R1 | 2 | 10, 8 | 180 | R2 | 2 | 180 | ||
6 | 80 | 8 | 360 | ||||||
4 | 120 | 5 | 160 | ||||||
7 | 90 | 2 | 340 | ||||||
R2 | 1 | 160 | P9 | R1 | 1 | 7, 5 | 360 | ||
5 | 90 | 5 | 160 | ||||||
3 | 120 | 2 | 180 | ||||||
7 | 90 | 3 | 190 | ||||||
R3 | 4 | 120 | 7 | 80 | |||||
1 | 160 | 1 | 160 | ||||||
5 | 60 | R2 | 1 | 360 | |||||
3 | 90 | 8 | 100 | ||||||
P3 | R1 | 8 | 0, 5 | 80 | 2 | 160 | |||
1 | 160 | 4 | 180 | ||||||
6 | 80 | 6 | 90 | ||||||
2 | 200 | 2 | 180 | ||||||
P4 | R1 | 2 | 5, 0 | 120 | P10 | R1 | 4 | 0, 10 | 90 |
6 | 100 | 8 | 100 | ||||||
1 | 200 | 2 | 120 | ||||||
4 | 140 | 5 | 60 | ||||||
1 | 150 | R2 | 6 | 60 | |||||
P5 | R1 | 2 | 6, 10 | 120 | 1 | 140 | |||
3 | 60 | 7 | 100 | ||||||
7 | 140 | 3 | 80 | ||||||
R2 | 1 | 120 | R3 | 5 | 60 | ||||
4 | 60 | 2 | 100 | ||||||
7 | 120 | 7 | 100 | ||||||
5 | 120 | 3 | 70 | ||||||
P6 | R1 | 2 | 4, 0 | 120 | P11 | R1 | 2 | 10, 0 | 360 |
7 | 60 | 3 | 90 | ||||||
6 | 100 | 7 | 120 | ||||||
2 | 120 | 1 | 180 | ||||||
P7 | R1 | 1 | 6, 4 | 90 | 4 | 90 | |||
5 | 160 | 7 | 40 | ||||||
2 | 50 | 5 | 360 | ||||||
7 | 120 | P12 | R1 | 4 | 9, 8 | 360 | |||
R2 | 2 | 120 | 6 | 90 | |||||
8 | 60 | 2 | 300 | ||||||
6 | 80 | 8 | 180 | ||||||
2 | 120 | 5 | 90 |
Parts | Routes | Operation | Demand | Time | Parts | Routes | Operation | Demand | Time |
P1 | R1 | 1 | 5, 7 | 360 | P7 | R3 | 2 | 90 | |
8 | 90 | 8 | 120 | ||||||
6 | 160 | 5 | 160 | ||||||
2 | 180 | 2 | 50 | ||||||
R2 | 8 | 90 | P8 | R1 | 1 | 4, 7 | 360 | ||
5 | 180 | 7 | 90 | ||||||
1 | 360 | 2 | 160 | ||||||
6 | 160 | 4 | 180 | ||||||
2 | 180 | 6 | 90 | ||||||
P2 | R1 | 2 | 10, 8 | 180 | R2 | 2 | 180 | ||
6 | 80 | 8 | 360 | ||||||
4 | 120 | 5 | 160 | ||||||
7 | 90 | 2 | 340 | ||||||
R2 | 1 | 160 | P9 | R1 | 1 | 7, 5 | 360 | ||
5 | 90 | 5 | 160 | ||||||
3 | 120 | 2 | 180 | ||||||
7 | 90 | 3 | 190 | ||||||
R3 | 4 | 120 | 7 | 80 | |||||
1 | 160 | 1 | 160 | ||||||
5 | 60 | R2 | 1 | 360 | |||||
3 | 90 | 8 | 100 | ||||||
P3 | R1 | 8 | 0, 5 | 80 | 2 | 160 | |||
1 | 160 | 4 | 180 | ||||||
6 | 80 | 6 | 90 | ||||||
2 | 200 | 2 | 180 | ||||||
P4 | R1 | 2 | 5, 0 | 120 | P10 | R1 | 4 | 0, 10 | 90 |
6 | 100 | 8 | 100 | ||||||
1 | 200 | 2 | 120 | ||||||
4 | 140 | 5 | 60 | ||||||
1 | 150 | R2 | 6 | 60 | |||||
P5 | R1 | 2 | 6, 10 | 120 | 1 | 140 | |||
3 | 60 | 7 | 100 | ||||||
7 | 140 | 3 | 80 | ||||||
R2 | 1 | 120 | R3 | 5 | 60 | ||||
4 | 60 | 2 | 100 | ||||||
7 | 120 | 7 | 100 | ||||||
5 | 120 | 3 | 70 | ||||||
P6 | R1 | 2 | 4, 0 | 120 | P11 | R1 | 2 | 10, 0 | 360 |
7 | 60 | 3 | 90 | ||||||
6 | 100 | 7 | 120 | ||||||
2 | 120 | 1 | 180 | ||||||
P7 | R1 | 1 | 6, 4 | 90 | 4 | 90 | |||
5 | 160 | 7 | 40 | ||||||
2 | 50 | 5 | 360 | ||||||
7 | 120 | P12 | R1 | 4 | 9, 8 | 360 | |||
R2 | 2 | 120 | 6 | 90 | |||||
8 | 60 | 2 | 300 | ||||||
6 | 80 | 8 | 180 | ||||||
2 | 120 | 5 | 90 |
Operation | Machine type | Machine name | Machine number | Available processing time /min |
1 | M1 | CNC lathes | 5 | 3000 |
2 | M2 | Ordinary lathes | 5 | 3000 |
3 | M3 | Slotting machines | 2 | 1700 |
4 | M4 | CNC slotting machines | 5 | 1600 |
5 | M5 | Grinders | 6 | 1200 |
6 | M6 | Grinding machines | 4 | 1200 |
7 | M7 | Gun Drill | 3 | 1600 |
8 | M8 | Drilling machines | 3 | 1200 |
Operation | Machine type | Machine name | Machine number | Available processing time /min |
1 | M1 | CNC lathes | 5 | 3000 |
2 | M2 | Ordinary lathes | 5 | 3000 |
3 | M3 | Slotting machines | 2 | 1700 |
4 | M4 | CNC slotting machines | 5 | 1600 |
5 | M5 | Grinders | 6 | 1200 |
6 | M6 | Grinding machines | 4 | 1200 |
7 | M7 | Gun Drill | 3 | 1600 |
8 | M8 | Drilling machines | 3 | 1200 |
Cell | Part(routing) | Number of each machine type in each cell | f1 | f2 | |||||||
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | ||||
1 | 1(2), 4(1), 8(1), 9(2), 12(1) | 3 | 3 | 0 | 4 | 2 | 3 | 1 | 3 | 4.0190 | 0.5939 |
2 | 2(2), 5(2), 11(1) | 2 | 2 | 2 | 1 | 5 | 0 | 3 | 0 | ||
3 | 6(1), 7(2) | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
Cell | Part(routing) | Number of each machine type in each cell | f1 | f2 | |||||||
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | ||||
1 | 1(2), 4(1), 8(1), 9(2), 12(1) | 3 | 3 | 0 | 4 | 2 | 3 | 1 | 3 | 4.0190 | 0.5939 |
2 | 2(2), 5(2), 11(1) | 2 | 2 | 2 | 1 | 5 | 0 | 3 | 0 | ||
3 | 6(1), 7(2) | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
Number of each machine type in each cell | f1 | f2 | f3 | |||||||||
Cell | Part(routing) | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |||
1 | 1(2), 8(1), 9(2), 12(1) | 3 | 3 | 0 | 4 | 2 | 3 | 1 | 3 | 3.3619 | 0.6384 | 6 |
2 | 2(2), 5(2), 7(1), 10(3) | 1 | 1 | 1 | 1 | 3 | 0 | 3 | 0 | |||
3 | 3(1) | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
Number of each machine type in each cell | f1 | f2 | f3 | |||||||||
Cell | Part(routing) | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |||
1 | 1(2), 8(1), 9(2), 12(1) | 3 | 3 | 0 | 4 | 2 | 3 | 1 | 3 | 3.3619 | 0.6384 | 6 |
2 | 2(2), 5(2), 7(1), 10(3) | 1 | 1 | 1 | 1 | 3 | 0 | 3 | 0 | |||
3 | 3(1) | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
Cell 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cell 2 | -1 | -1 | -1 | 0 | -2 | 0 | 0 | 0 |
Cell 3 | +1 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
Cell 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cell 2 | -1 | -1 | -1 | 0 | -2 | 0 | 0 | 0 |
Cell 3 | +1 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
[1] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[2] |
Ya Liu, Zhaojin Li. Dynamic-programming-based heuristic for multi-objective operating theater planning. Journal of Industrial and Management Optimization, 2022, 18 (1) : 111-135. doi: 10.3934/jimo.2020145 |
[3] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
[4] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[5] |
Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088 |
[6] |
Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134 |
[7] |
Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial and Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365 |
[8] |
Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial and Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595 |
[9] |
Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021208 |
[10] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[11] |
Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 |
[12] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[13] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[14] |
Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 |
[15] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[16] |
Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021169 |
[17] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051 |
[18] |
Nguyen Thi Toan. Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021088 |
[19] |
Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055 |
[20] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]