• Previous Article
    Pricing of European call option under fuzzy interest rate
  • JIMO Home
  • This Issue
  • Next Article
    Effects of the carbon credits buy-back policy on manufacturing/remanufacturing decisions of the capital-constrained manufacturer
doi: 10.3934/jimo.2022010
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

How to share partial information with competitive manufacturers

1. 

School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, China, Springfield, MO 65801-2604, USA

2. 

School of Mathematical Sciences, Tiangong University, Tianjin 300387, China, Springfield, MO 65810, USA

*Corresponding author: Fujun Hou

Received  August 2021 Revised  December 2021 Early access January 2022

This paper investigates the partial information sharing of a supply chain including one retailer and two competitive manufacturers. The retailer has information about the uncertain market demand, and can share partial information with neither, one, or both of the manufacturers. We formulate three pricing decision models, and explore how some parameters (e.g., the amount of shared information, competition intensity, etc.) affect pricing and profits. Moreover, we give the sufficient conditions that each member benefits from the retailer's partial information sharing.

Citation: Huimin Zhang, Jing Zhao, Fujun Hou. How to share partial information with competitive manufacturers. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2022010
References:
[1]

W. BianJ. Shang and J. Zhang, Two-way information sharing under supply chain competition, International Journal of Production Economics, 178 (2016), 82-94.  doi: 10.1016/j.ijpe.2016.04.025.

[2]

K. CaiS. He and Z. He, Information sharing under different warranty policies with cost sharing in supply chains, International Transactions in Operational Research, 27 (2020), 1550-1572.  doi: 10.1111/itor.12597.

[3]

W. H. J. Chu and C. C. Lee, Strategic information sharing in a supply chain, European Journal of Operational Research, 174 (2006), 1567-1579.  doi: 10.1016/j.ejor.2005.02.053.

[4]

R. DominguezS. CannellaA. P. Barbosa-Póvoa and J. M. Framinan, OVAP: A strategy to implement partial information sharing among supply chain retailers, Transportation Research Part E, 110 (2018), 122-136.  doi: 10.1016/j.tre.2017.12.016.

[5]

E. Gal-OrT. Geylani and A. J. Dukes, Information sharing in a channel with partially informed retailers, Marketing Science, 110 (2008), 642-658. 

[6]

E. Gal-Or, Information sharing in oligopoly, Econometrica, 53 (1985), 329-343.  doi: 10.2307/1911239.

[7]

M. GaneshS. Raghunathan and C. Rajendran, Distribution and equitable sharing of value from information sharing within serial supply chains, IEEE Transactions on Engineering Management, 61 (2014), 225-236.  doi: 10.1109/TEM.2013.2271534.

[8]

M. GaneshS. Raghunathan and C. Rajendran, The value of information sharing in a multi-product, multi-level supply chain: Impact of product substitution, demand correlation, and partial information sharing, Decision Support Systems, 58 (2014), 79-94.  doi: 10.1016/j.dss.2013.01.012.

[9]

L. GuoT. Li and H. Zhang, Strategic information sharing in competing channels, Production and Operations Management Society, 23 (2014), 1719-1731.  doi: 10.1111/poms.12195.

[10]

A. Y. Ha and S. Tong, Contracting and information sharing under supply chain competition, Management Science, 54 (2008), 701-715.  doi: 10.1287/mnsc.1070.0795.

[11]

A. Y. HaS. Tong and H. Zhang, Sharing demand information in competing supply chains with production diseconomies, Management Science, 57 (2011), 566-581.  doi: 10.1287/mnsc.1100.1295.

[12]

Y. S. HuangJ. S. Hung and J. W. Ho, A study on information sharing for supply chains with multiple suppliers, Computers & Industrial Engineering, 104 (2017), 114-123.  doi: 10.1016/j.cie.2016.12.014.

[13]

Y. S. HuangM. C. Li and J. W. Ho, Determination of the optimal degree of information sharing in a two-echelon supply chain, International Journal of Production Research, 54 (2016), 1518-1534.  doi: 10.1080/00207543.2015.1092615.

[14]

B. JiangL. TianY. Xu and F. Zhang, To share or not to share: Demand forecast sharing in a distribution channel, Marketing Science, 35 (2016), 1-10. 

[15]

J. S. LauG. Q. Huang and K. L. Mak, Impact of information sharing on inventory replenishment in divergent supply chains, International Journal of Production Research, 42 (2004), 919-941.  doi: 10.1080/00207540310001628911.

[16]

M. LeiH. LiuH. DengT. Huang and G. K. Leong, Demand information sharing and channel choice in a dual-channel supply chain with multiple retailers, International Journal of Production Research, 52 (2014), 6792-6818.  doi: 10.1080/00207543.2014.918286.

[17]

L. Li, Cournot oligopoly with information sharing, RAND Journal of Economic, 16 (1985), 521-536.  doi: 10.2307/2555510.

[18]

L. Li, Information sharing in a supply chain with horizontal competition, Management Science, 48 (2002), 1196-1212. 

[19]

T. Li and H. Zhang, Information sharing in a supply chain with a make-to-stock manufacturer, Omega, 50 (2015), 115-125.  doi: 10.1016/j.omega.2014.08.001.

[20]

L. Li and H. Zhang, Confidentially and information sharing in supply chain coordination, Management Science, 54 (2008), 1467-1481. 

[21]

B. K. MishraS. Raghunathan and X. Yue, Demand forecast sharing in supply chains, Production and Operations Management, 18 (2009), 152-166.  doi: 10.1111/j.1937-5956.2009.01013.x.

[22]

M. Raith, A general model of information in oligopoly, Journal of Economic Theory, 71 (1996), 260-288. 

[23]

N. Shamir and H. Shin, Public forecast information sharing in a market with competing supply chains, Management Science, 62 (2016), 2994-3022. 

[24]

W. ShangA. Y. Ha and S. Tong, Information sharing in a supply chain with a common retailer, Management Science, 62 (2016), 245-263.  doi: 10.1287/mnsc.2014.2127.

[25]

N. ShiS. ZhouF. WangS. Xu and S. Xiong, Horizontal cooperation and information sharing between suppliers in the manufacturer-supplier triad, International Journal of Production Research, 52 (2014), 4526-4547.  doi: 10.1080/00207543.2013.869630.

[26]

M. Shnaiderman and F. El Ouardighi, The impact of partial information sharing in a two-echelon supply chain, Operations Research Letters, 42 (2014), 234-237.  doi: 10.1016/j.orl.2014.03.006.

[27]

P. D. Tai, T. T. H. Duc and J. Buddhakulsomsiri, Value of information sharing in supply chain under promotional competition, International Transactions in Operational Research, (2020), 1–33. doi: 10.1111/itor.12859.

[28]

X. Vives, Duopoly information equilibrium: Cournot and Bertrand, Journal of Economic Theory, 34 (1984), 71-94.  doi: 10.1016/0022-0531(84)90162-5.

[29]

J. WeiJ. Zhao and X. Hou, Bilateral information sharing in two supply chains with complementary products, Applied Mathematical Modelling, 72 (2019), 28-49.  doi: 10.1016/j.apm.2019.03.015.

[30]

R. Yan and Z. Pei, Incentive information sharing in various market structures, Decision Support Systems, 76 (2015), 76-86.  doi: 10.1016/j.dss.2015.03.003.

[31]

X. Yue and J. Liu, Demand forecast sharing in a dual-channel supply chain, European Journal of Operational Research, 174 (2006), 646-667.  doi: 10.1016/j.ejor.2004.12.020.

[32]

H. Zhang, Vertical information exchange in a supply chain with duopoly retailers, Production and Operations Management, 11 (2002), 531-546.  doi: 10.1111/j.1937-5956.2002.tb00476.x.

[33]

T. ZhangX. ZhuC. Zhou and M. Liu, Pricing and advertising the relief goods under various information sharing scenarios, International Transactions in Operational Research, 24 (2017), 867-889.  doi: 10.1111/itor.12221.

[34]

J. ZhaoW. TangR. Zhao and J. Wei, Pricing decisions for substitutable products with a common retailer in fuzzy environments, European Journal of Operational Research, 216 (2012), 409-419.  doi: 10.1016/j.ejor.2011.07.026.

[35]

X. ZhaoL. Xue and F. Zhang, Outsourcing competition and information sharing with asymmetrically informed suppliers, Production and Operations Management, 23 (2014), 1706-1718. 

[36]

M. ZhouB. DanS. Ma and X. Zhang, Supply chain coordination with information sharing: The informational advantage of GPOs, European Journal of Operational Research, 256 (2017), 785-802.  doi: 10.1016/j.ejor.2016.06.045.

show all references

References:
[1]

W. BianJ. Shang and J. Zhang, Two-way information sharing under supply chain competition, International Journal of Production Economics, 178 (2016), 82-94.  doi: 10.1016/j.ijpe.2016.04.025.

[2]

K. CaiS. He and Z. He, Information sharing under different warranty policies with cost sharing in supply chains, International Transactions in Operational Research, 27 (2020), 1550-1572.  doi: 10.1111/itor.12597.

[3]

W. H. J. Chu and C. C. Lee, Strategic information sharing in a supply chain, European Journal of Operational Research, 174 (2006), 1567-1579.  doi: 10.1016/j.ejor.2005.02.053.

[4]

R. DominguezS. CannellaA. P. Barbosa-Póvoa and J. M. Framinan, OVAP: A strategy to implement partial information sharing among supply chain retailers, Transportation Research Part E, 110 (2018), 122-136.  doi: 10.1016/j.tre.2017.12.016.

[5]

E. Gal-OrT. Geylani and A. J. Dukes, Information sharing in a channel with partially informed retailers, Marketing Science, 110 (2008), 642-658. 

[6]

E. Gal-Or, Information sharing in oligopoly, Econometrica, 53 (1985), 329-343.  doi: 10.2307/1911239.

[7]

M. GaneshS. Raghunathan and C. Rajendran, Distribution and equitable sharing of value from information sharing within serial supply chains, IEEE Transactions on Engineering Management, 61 (2014), 225-236.  doi: 10.1109/TEM.2013.2271534.

[8]

M. GaneshS. Raghunathan and C. Rajendran, The value of information sharing in a multi-product, multi-level supply chain: Impact of product substitution, demand correlation, and partial information sharing, Decision Support Systems, 58 (2014), 79-94.  doi: 10.1016/j.dss.2013.01.012.

[9]

L. GuoT. Li and H. Zhang, Strategic information sharing in competing channels, Production and Operations Management Society, 23 (2014), 1719-1731.  doi: 10.1111/poms.12195.

[10]

A. Y. Ha and S. Tong, Contracting and information sharing under supply chain competition, Management Science, 54 (2008), 701-715.  doi: 10.1287/mnsc.1070.0795.

[11]

A. Y. HaS. Tong and H. Zhang, Sharing demand information in competing supply chains with production diseconomies, Management Science, 57 (2011), 566-581.  doi: 10.1287/mnsc.1100.1295.

[12]

Y. S. HuangJ. S. Hung and J. W. Ho, A study on information sharing for supply chains with multiple suppliers, Computers & Industrial Engineering, 104 (2017), 114-123.  doi: 10.1016/j.cie.2016.12.014.

[13]

Y. S. HuangM. C. Li and J. W. Ho, Determination of the optimal degree of information sharing in a two-echelon supply chain, International Journal of Production Research, 54 (2016), 1518-1534.  doi: 10.1080/00207543.2015.1092615.

[14]

B. JiangL. TianY. Xu and F. Zhang, To share or not to share: Demand forecast sharing in a distribution channel, Marketing Science, 35 (2016), 1-10. 

[15]

J. S. LauG. Q. Huang and K. L. Mak, Impact of information sharing on inventory replenishment in divergent supply chains, International Journal of Production Research, 42 (2004), 919-941.  doi: 10.1080/00207540310001628911.

[16]

M. LeiH. LiuH. DengT. Huang and G. K. Leong, Demand information sharing and channel choice in a dual-channel supply chain with multiple retailers, International Journal of Production Research, 52 (2014), 6792-6818.  doi: 10.1080/00207543.2014.918286.

[17]

L. Li, Cournot oligopoly with information sharing, RAND Journal of Economic, 16 (1985), 521-536.  doi: 10.2307/2555510.

[18]

L. Li, Information sharing in a supply chain with horizontal competition, Management Science, 48 (2002), 1196-1212. 

[19]

T. Li and H. Zhang, Information sharing in a supply chain with a make-to-stock manufacturer, Omega, 50 (2015), 115-125.  doi: 10.1016/j.omega.2014.08.001.

[20]

L. Li and H. Zhang, Confidentially and information sharing in supply chain coordination, Management Science, 54 (2008), 1467-1481. 

[21]

B. K. MishraS. Raghunathan and X. Yue, Demand forecast sharing in supply chains, Production and Operations Management, 18 (2009), 152-166.  doi: 10.1111/j.1937-5956.2009.01013.x.

[22]

M. Raith, A general model of information in oligopoly, Journal of Economic Theory, 71 (1996), 260-288. 

[23]

N. Shamir and H. Shin, Public forecast information sharing in a market with competing supply chains, Management Science, 62 (2016), 2994-3022. 

[24]

W. ShangA. Y. Ha and S. Tong, Information sharing in a supply chain with a common retailer, Management Science, 62 (2016), 245-263.  doi: 10.1287/mnsc.2014.2127.

[25]

N. ShiS. ZhouF. WangS. Xu and S. Xiong, Horizontal cooperation and information sharing between suppliers in the manufacturer-supplier triad, International Journal of Production Research, 52 (2014), 4526-4547.  doi: 10.1080/00207543.2013.869630.

[26]

M. Shnaiderman and F. El Ouardighi, The impact of partial information sharing in a two-echelon supply chain, Operations Research Letters, 42 (2014), 234-237.  doi: 10.1016/j.orl.2014.03.006.

[27]

P. D. Tai, T. T. H. Duc and J. Buddhakulsomsiri, Value of information sharing in supply chain under promotional competition, International Transactions in Operational Research, (2020), 1–33. doi: 10.1111/itor.12859.

[28]

X. Vives, Duopoly information equilibrium: Cournot and Bertrand, Journal of Economic Theory, 34 (1984), 71-94.  doi: 10.1016/0022-0531(84)90162-5.

[29]

J. WeiJ. Zhao and X. Hou, Bilateral information sharing in two supply chains with complementary products, Applied Mathematical Modelling, 72 (2019), 28-49.  doi: 10.1016/j.apm.2019.03.015.

[30]

R. Yan and Z. Pei, Incentive information sharing in various market structures, Decision Support Systems, 76 (2015), 76-86.  doi: 10.1016/j.dss.2015.03.003.

[31]

X. Yue and J. Liu, Demand forecast sharing in a dual-channel supply chain, European Journal of Operational Research, 174 (2006), 646-667.  doi: 10.1016/j.ejor.2004.12.020.

[32]

H. Zhang, Vertical information exchange in a supply chain with duopoly retailers, Production and Operations Management, 11 (2002), 531-546.  doi: 10.1111/j.1937-5956.2002.tb00476.x.

[33]

T. ZhangX. ZhuC. Zhou and M. Liu, Pricing and advertising the relief goods under various information sharing scenarios, International Transactions in Operational Research, 24 (2017), 867-889.  doi: 10.1111/itor.12221.

[34]

J. ZhaoW. TangR. Zhao and J. Wei, Pricing decisions for substitutable products with a common retailer in fuzzy environments, European Journal of Operational Research, 216 (2012), 409-419.  doi: 10.1016/j.ejor.2011.07.026.

[35]

X. ZhaoL. Xue and F. Zhang, Outsourcing competition and information sharing with asymmetrically informed suppliers, Production and Operations Management, 23 (2014), 1706-1718. 

[36]

M. ZhouB. DanS. Ma and X. Zhang, Supply chain coordination with information sharing: The informational advantage of GPOs, European Journal of Operational Research, 256 (2017), 785-802.  doi: 10.1016/j.ejor.2016.06.045.

Figure 1.  Three information sharing patterns
Figure 2.  Feasible region of information sharing
Figure 3.  The effect of $ \tau $ on the expected profits
Figure 4.  The effect of $ t $ on the expected profits
Figure 5.  The effect of $ \sigma $ on the expected profits
Figure 6.  The effect of $ \gamma $ on the expected profits
Table 1.  Notations and Descriptions
Notation Descriptions
$ p_i $ retail price of product $ i $, decided by retailer
$ w_i $ wholesale price of product $ i $, decided by manufacturer $ i $
$ d_i $ demand of product $ i $
$ a $ determined market base
$ \varepsilon $ market demand uncertainty, a random variable with mean zero and variance $ \sigma^2 $
$ \gamma $ competition between both manufacturers,
which denotes the substitutability degree between products 1 and 2
$ Y $ retailer's private demand information
$ y $ informed manufacturer's demand signal
$ t $ retailer's signal precision
$ \tau $ the amount of shared information
$ \pi_{m_i} $ profit of manufacturer $ i $
$ \pi_r $ profit of retailer $ i $
$ \Pi_{m_i} $ expected profit of manufacturer $ i $
$ \Pi_r $ expected profit of retailer
$ v_{m_i} $ value of manufacturer $ i's $ information sharing
$ v_r $ value of retailer information sharing
$ V_{m_i} $ expected value of manufacturer $ i's $ information sharing
$ V_r $ expected value of retailer information sharing
Notation Descriptions
$ p_i $ retail price of product $ i $, decided by retailer
$ w_i $ wholesale price of product $ i $, decided by manufacturer $ i $
$ d_i $ demand of product $ i $
$ a $ determined market base
$ \varepsilon $ market demand uncertainty, a random variable with mean zero and variance $ \sigma^2 $
$ \gamma $ competition between both manufacturers,
which denotes the substitutability degree between products 1 and 2
$ Y $ retailer's private demand information
$ y $ informed manufacturer's demand signal
$ t $ retailer's signal precision
$ \tau $ the amount of shared information
$ \pi_{m_i} $ profit of manufacturer $ i $
$ \pi_r $ profit of retailer $ i $
$ \Pi_{m_i} $ expected profit of manufacturer $ i $
$ \Pi_r $ expected profit of retailer
$ v_{m_i} $ value of manufacturer $ i's $ information sharing
$ v_r $ value of retailer information sharing
$ V_{m_i} $ expected value of manufacturer $ i's $ information sharing
$ V_r $ expected value of retailer information sharing
Table 2.  The maximal profits and the expected profits
$ X_iX_j=II $ $ X_iX_j=IN $ $ X_iX_j=NN $
The maximal $ \pi^{II*}_{m_i}=\Phi_m+v^{II}_{m_i} $ $ \pi^{IN*}_{m_i}=\Phi_m+v^{IN}_{m_i} $ $ \pi^{NN*}_{m_i}=\Phi_m $
profits $ \pi^{II*}_{m_j}=\Phi_m+v^{II}_{m_j} $ $ \pi^{NI*}_{m_j}=\Phi_m+v^{NI}_{m_j} $ $ \pi^{NN*}_{m_j}=\Phi_m $
$ \pi^{II*}_r=\Phi_r+v^{II}_r $ $ \pi^{IN*}_r=\Phi_r+v^{IN}_r $ $ \pi^{NN*}_r=\Phi_r $
The expected $ \Pi^{II*}_{m_i}=\overline{\Pi}_{m_i}+V^{II}_{m_i} $ $ \Pi^{IN*}_{m_i} =\overline{\Pi}_{m_i}+V^{IN}_{m_i} $ $ \Pi^{NN*}_{m_i}=\overline{\Pi}_{m_i} $
profits $ \Pi^{II*}_{m_j}=\overline{\Pi}_{m_j}+V^{II}_{m_j} $ $ \Pi^{NI*}_{m_j}=\overline\Pi_{m_j} $ $ \Pi^{NN*}_{m_j}=\overline{\Pi}_{m_j} $
$ \Pi^{II*}_r=\overline{\Pi}_r+F_r+V^{II}_r $ $ \Pi^{IN*}_r=\overline{\Pi}_r+F_r+V^{IN}_r $ $ \Pi^{NN*}_r=\overline{\Pi}_r+F_r $
$ X_iX_j=II $ $ X_iX_j=IN $ $ X_iX_j=NN $
The maximal $ \pi^{II*}_{m_i}=\Phi_m+v^{II}_{m_i} $ $ \pi^{IN*}_{m_i}=\Phi_m+v^{IN}_{m_i} $ $ \pi^{NN*}_{m_i}=\Phi_m $
profits $ \pi^{II*}_{m_j}=\Phi_m+v^{II}_{m_j} $ $ \pi^{NI*}_{m_j}=\Phi_m+v^{NI}_{m_j} $ $ \pi^{NN*}_{m_j}=\Phi_m $
$ \pi^{II*}_r=\Phi_r+v^{II}_r $ $ \pi^{IN*}_r=\Phi_r+v^{IN}_r $ $ \pi^{NN*}_r=\Phi_r $
The expected $ \Pi^{II*}_{m_i}=\overline{\Pi}_{m_i}+V^{II}_{m_i} $ $ \Pi^{IN*}_{m_i} =\overline{\Pi}_{m_i}+V^{IN}_{m_i} $ $ \Pi^{NN*}_{m_i}=\overline{\Pi}_{m_i} $
profits $ \Pi^{II*}_{m_j}=\overline{\Pi}_{m_j}+V^{II}_{m_j} $ $ \Pi^{NI*}_{m_j}=\overline\Pi_{m_j} $ $ \Pi^{NN*}_{m_j}=\overline{\Pi}_{m_j} $
$ \Pi^{II*}_r=\overline{\Pi}_r+F_r+V^{II}_r $ $ \Pi^{IN*}_r=\overline{\Pi}_r+F_r+V^{IN}_r $ $ \Pi^{NN*}_r=\overline{\Pi}_r+F_r $
Table 3.  Comparison on the effects of information sharing
paper SC structure information effects of IS
M R M R SC
Zhang[32] 1-2 $ \times $ $ \surd $ B H BC
Li [18] 1-n $ \times $ $ \surd $ B H BC
Mishra et al. [21] 1-1 $ \surd $ $ \surd $ $ \ast $ B H H
$ \star $ B H BC
This paper 2-1 $ \times $ $ \surd $ $ \ddagger $ B H H
$ \dagger $ B/N H H
Note: M: manufacturer R: retailer SC: supply chain IS: information sharing
B: beneficial H: harmful BC: beneficial under some conditions
N: no effect $\ast$: make-to order scenario $\star$: make-to-stock scenario
$\ddagger$: share with both manufacturers $\dagger$: share with one of manufacturers
B/N: information sharing benefits the informed manufacturer, and has no effect on the uninformed manufacturer
paper SC structure information effects of IS
M R M R SC
Zhang[32] 1-2 $ \times $ $ \surd $ B H BC
Li [18] 1-n $ \times $ $ \surd $ B H BC
Mishra et al. [21] 1-1 $ \surd $ $ \surd $ $ \ast $ B H H
$ \star $ B H BC
This paper 2-1 $ \times $ $ \surd $ $ \ddagger $ B H H
$ \dagger $ B/N H H
Note: M: manufacturer R: retailer SC: supply chain IS: information sharing
B: beneficial H: harmful BC: beneficial under some conditions
N: no effect $\ast$: make-to order scenario $\star$: make-to-stock scenario
$\ddagger$: share with both manufacturers $\dagger$: share with one of manufacturers
B/N: information sharing benefits the informed manufacturer, and has no effect on the uninformed manufacturer
[1]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial and Management Optimization, 2022, 18 (2) : 843-872. doi: 10.3934/jimo.2020181

[2]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[3]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[4]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3083-3103. doi: 10.3934/jimo.2019095

[5]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[6]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1613-1633. doi: 10.3934/jimo.2019020

[7]

Arman Hamedirostami, Alireza Goli, Yousef Gholipour-Kanani. Green cross-dock based supply chain network design under demand uncertainty using new metaheuristic algorithms. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021105

[8]

Weihua Liu, Xinran Shen, Di Wang, Jingkun Wang. Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3269-3295. doi: 10.3934/jimo.2020118

[9]

Chandan Pathak, Saswati Mukherjee, Santanu Kumar Ghosh, Sudhansu Khanra. A three echelon supply chain model with stochastic demand dependent on price, quality and energy reduction. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2959-2975. doi: 10.3934/jimo.2021098

[10]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[11]

Guoqiang Shi, Yong Wang, Dejian Xia, Yanfei Zhao. Information sharing when competing manufacturers adopt asymmetric channel in an e-tailer. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021207

[12]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial and Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[13]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial and Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[14]

Zhongbao Zhou, Xingfen Liu, Feimin Zhong, Yuan Cao, Long Zheng. Retailer's willingness to adopt blockchain technology based on private demand information. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022087

[15]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial and Management Optimization, 2022, 18 (1) : 487-510. doi: 10.3934/jimo.2020165

[16]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial and Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[17]

Xiaomei Li, Renjing Liu, Zhongquan Hu, Jiamin Dong. Information sharing in two-tier supply chains considering cost reduction effort and information leakage. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021200

[18]

Bin Chen, Wenying Xie, Fuyou Huang, Juan He. Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2903-2924. doi: 10.3934/jimo.2020100

[19]

Hamed Jafari, Soroush Safarzadeh. Producing two substitutable products under a supply chain including two manufacturers and one retailer: A game-theoretic approach. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022102

[20]

Rodrigo A. Garrido, Ivan Aguirre. Emergency logistics for disaster management under spatio-temporal demand correlation: The earthquakes case. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2369-2387. doi: 10.3934/jimo.2019058

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (233)
  • HTML views (224)
  • Cited by (0)

Other articles
by authors

[Back to Top]