[1]
|
Ç. S. Aksezer, On the sensitivity of desirability functions for multiresponse optimization, Journal of Industrial and Management Optimization, 4 (2008), 685-696.
doi: 10.3934/jimo.2008.4.685.
|
[2]
|
W. E. Biles, A response surface methods for experimental optimization of multi-response processes, Industrial and Engineering Chemistry Process Design and Deployment, 14 (1975), 152-158.
doi: 10.1021/i260054a010.
|
[3]
|
J. L. Chapman, L. Lu and C. M. Anderson-Cook, Process optimization for multiple responses utilizing the Pareto front approach, Quality Engineering, 26 (2014), 253-268.
doi: 10.1080/08982112.2013.852681.
|
[4]
|
J. L. Chapman, L. Lu and C. M. Anderson-Cook, Incorporating response variability and estimation uncertainty into Pareto front optimization, Computers & Industrial Engineering, 76 (2014), 253-267.
doi: 10.1016/j.cie.2014.07.028.
|
[5]
|
J. L. Chapman, L. Lu and C. M. Anderson-Cook, Impact of response variability on Pareto front optimization, Statistical Analysis & Data Mining, 8 (2015), 314-328.
doi: 10.1002/sam.11279.
|
[6]
|
R. Curto and L. Fialkow, Truncated $K$-moment problems in several variables, Journal of Operator Theory, 54 (2005), 189–226, https://www.jstor.org/stable/24715679.
|
[7]
|
E. del Castillo, Multiresponse process optimization via constrained confidence regions, Journal of Quality Technology, 28 (1996), 61-70.
doi: 10.1080/00224065.1996.11979637.
|
[8]
|
G. Derringer and R. Suich, Simultaneous optimization of several response variables, Journal of Quality Thchnology, 12 (1980), 214-219.
doi: 10.1080/00224065.1980.11980968.
|
[9]
|
Z. He, P. F. Zhu and H. S. Park, A robust desirability function method for multi-response surface optimization considering model uncertainty, European Journal of Operational Research, 221 (2012), 241-247.
doi: 10.1016/j.ejor.2012.03.009.
|
[10]
|
E. C. Jr Harrington, The desriability function, Industrial Quality Control, 21 (1965), 494-498.
|
[11]
|
A. I. Khuri, 12 Multiresponse surface methodology, in Handbook of Statistics: Design and Analysis of Experiments (eds. A. Ghosh and C. R. Rao), Elsevier, Amsterdam, 13 (1996), 377–406.
doi: 10.1016/S0169-7161(96)13014-5.
|
[12]
|
A. I. Khuri and J. A. Cornell, Response Surfaces: Designs and Analyses (2th edn), Dekker, New York, 1996.
|
[13]
|
J. B. Lasserre, Global optimization with polynomial and the problem of moments, SIAM Journal on Optimization, 11 (2001), 796-817.
doi: 10.1137/S1052623400366802.
|
[14]
|
J. B. Lasserre, Moments, Positive Polynomials and Their Applications, Imperial College Press, World Scientific, Singapore, 2010.
|
[15]
|
J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
|
[16]
|
J. Löfberg, Pre- and post-processing sums-of-squares programs in practice, IEEE Transactions on Automatic Control, 54 (2009), 1007-1011.
doi: 10.1109/TAC.2009.2017144.
|
[17]
|
N. Logothetis and H. P. Wynn, Quality Through Design, Oxford Science Publications, Clarendon Press, Oxford, 1989.
|
[18]
|
D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York-London-Sydney, 1976.
|
[19]
|
R. H. Myers and W. H. Carter, Response surface techniques for dual response systems, Technometrics, 15 (1973), 301-317.
doi: 10.1080/00401706.1973.10489044.
|
[20]
|
R. H. Myers and D. C. Montgomery, Response Surface Methodology (2nd edn), John Wiley & Sons, New York, 2002.
|
[21]
|
R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response Surface Methodology, Hoboken, NJ: Wiley, 2009.
|
[22]
|
J. Nie, Certifying convergence of Lasserre's hierachy via flat truncation, Mathematical Programming, 142 (2013), 485-510.
doi: 10.1007/s10107-012-0589-9.
|
[23]
|
L. Ouyang, Y. Ma and J. H. Byun, An integrative loss function approach to multi-response optimization, Quality and Reliability Engineering International, 31 (2015), 193-204.
doi: 10.1002/qre.1571.
|
[24]
|
L. Ouyang, Y. Ma, J. H. Byun, J. Wang and Y. Tu, A prediction region-based approach to model uncertainty for multi-response optimization, Quality and Reliability Engineering International, 32 (2016), 783-794.
doi: 10.1002/qre.1790.
|
[25]
|
K. C. Toh, M. J. Todd and R. H. Tütüncü, SDPT3 – a Matlab software package for semidefinite programming, Version 1.3, Interior point methods, Optimization Methods and Software, 11 (1999), 545-581.
doi: 10.1080/10556789908805762.
|