This paper studies the optimal proportional reinsurance and investment strategy for an insurer who invests one paired assets, where their price spread is described by Ornstein-Uhlenbeck (O-U) processes. The insurer's objective is to maximize the expected exponential utility of the terminal wealth in a finite time horizon under two risk models: a classical risk model and a diffusion model. Using the classical stochastic control approach based on the Hamilton-Jacobi-Bellman equation, we characterize the optimal strategies and provide a verification result for the value function via the exponential integrability of the square of an O-U process. Finally, numerical examples are performed to obtain sensitivity analysis.
Citation: |
[1] |
L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance Math. Econom., 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.![]() ![]() ![]() |
[2] |
F. E. Benth and K. H. Karlsen, A note on Merton's portfolio selection problem for the Schwartz mean-reversion model, Stoch. Anal. Appl., 23 (2005), 687-704.
doi: 10.1081/SAP-200064457.![]() ![]() ![]() |
[3] |
W. K. Bertram, Analytic solutions for optimal statistical arbitrage trading, Physica A: Statistical Mechanics and its Applications, Issue 11, 389 (2010), 2234-2243.
![]() |
[4] |
M. Boguslavsky and E. Boguslavskaya, Arbitrage under power, Risk, 17 (2004), 69-73.
![]() |
[5] |
M. Brachetta and H. Schmidli, Optimal reinsurance and investment in a diffusion model, Decis. Econ. Finance, 43 (2020), 341-361.
doi: 10.1007/s10203-019-00265-8.![]() ![]() ![]() |
[6] |
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.![]() ![]() ![]() |
[7] |
R. J. Elliott, J. van der Hoek and W. P. Malcolm, Pairs trading, Quant. Finance, 5 (2005), 271-276.
doi: 10.1080/14697680500149370.![]() ![]() ![]() |
[8] |
E. Gatev, W. N. Goetzmann and K. G. Rouwenhorst, Pairs trading: Performance of a relative value arbitrage rule, Social Science Electronic Publishing, 19 (2006), 797-827.
![]() |
[9] |
H. U. Gerber, An Introduction to Mathematical Risk Theory, Huebner Foundation Monograph Series, 8., Distributed by Richard D. Irwin, Inc., Homewood, Ill., 1979.
![]() ![]() |
[10] |
J. Grandell, Aspects of Risk Theory, Springer, New York, 1991.
doi: 10.1007/978-1-4613-9058-9.![]() ![]() ![]() |
[11] |
B. H$\phi$jgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy, Quant. Finance, 4 (2004), 315-327.
doi: 10.1088/1469-7688/4/3/007.![]() ![]() ![]() |
[12] |
Z. B. Liang, L. H. Bai and J. Y. Guo, Optimal investment and proportional reinsurance with constrained control variables, Optimal Control Appl. Methods, 32 (2011), 587-608.
doi: 10.1002/oca.965.![]() ![]() ![]() |
[13] |
Y. X. Lin, M. McCrae and C. Gulati, Loss protection in pairs trading through minimum profit bounds: A cointegration approach, J. Appl. Math. Decis. Sci., 2006 (2006), 1-14.
doi: 10.1155/JAMDS/2006/73803.![]() ![]() ![]() |
[14] |
R. C. Merton, Option pricing when the underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.
![]() |
[15] |
S. Mudchanatongsuk, J. A. Primbs and W. Wong, Optimal Pairs Trading: A Stochastic Control Approach, American Control Conference IEEE, 2008.
doi: 10.1109/ACC.2008.4586628.![]() ![]() |
[16] |
D. S. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 109-128.
doi: 10.1080/10920277.2005.10596214.![]() ![]() ![]() |
[17] |
H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.
doi: 10.1080/034612301750077338.![]() ![]() ![]() |
[18] |
G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis, John Wiley Sons, 2004.
![]() |
[19] |
K. Vladislav, Optimal Convergence Trading, Technical report, EconWPA, 2004.
![]() |
[20] |
H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009.![]() ![]() ![]() |
The sample path of
The influence of
The influence of