[1]
|
A. Antoniadis, Wavelet methods in statistics: Some recent developments and their applications, Statistics Surveys, 1 (2007), 16-55.
doi: 10.1214/07-SS014.
|
[2]
|
L. Breiman, Heuristics of instability and stabilization in model selection, The Annals of Statistics, 24 (1996), 2350-2383.
doi: 10.1214/aos/1032181158.
|
[3]
|
P. Breheny and J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, The Annals of Applied Statistics, 5 (2011), 232-253.
doi: 10.1214/10-AOAS388.
|
[4]
|
E. Candes and T. Tao, The dantzig selector: Statistical estimation when $p$ is much larger than $n$, The Annals of Statistics, 35 (2007), 2313-2351.
doi: 10.1214/009053606000001523.
|
[5]
|
J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96 (2001), 1348-1360.
doi: 10.1198/016214501753382273.
|
[6]
|
Q. Fan, Y. Jiao and X. Lu, A primal dual active set algorithm with continuation for compressed sensing, IEEE Transactions on Signal Processing, 62 (2014), 6276-6285.
doi: 10.1109/TSP.2014.2362880.
|
[7]
|
L. E. Frank and J. H. Friedman, A statistical view of some chemometrics regression tools, Technometrics, 35 (1993), 109-135.
|
[8]
|
W. J. Fu, Penalized regressions: The bridge versus the lasso, Journal of Computational and Graphical Statistics, 7 (1998), 397-416.
doi: 10.2307/1390712.
|
[9]
|
J. Huang, Y. Jiao, L. Kang, J. Liu, Y. Liu, X. Lu and Y. Yang, On newton screening, preprint, arXiv: 200110616.
|
[10]
|
J. Huang, Y. Jiao, B. Jin, J. Liu, X. Lu and C. Yang, A unified primal dual active set algorithm for nonconvex sparse recovery, Statistical Science, 36 (2021), 215-238.
doi: 10.1214/19-sts758.
|
[11]
|
J. Huang, Y. Jiao, Y. Liu and X. Lu, A constructive approach to L0 penalized regression, Journal of Machine Learning Research, 19 (2018), 1-37.
|
[12]
|
K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, vol 15, 2008.
doi: 10.1137/1.9780898718614.
|
[13]
|
Y. Jiao, B. Jin and X. Lu, A primal dual active set with continuation algorithm for the $l_0$-regularized optimization problem, Applied and Computational Harmonic Analysis, 39 (2015), 400-426.
doi: 10.1016/j.acha.2014.10.001.
|
[14]
|
Y. Kim, S. Kwon and H. Choi, Consistent model selection criteria on high dimensions, The Journal of Machine Learning Research, 13 (2012), 1037-1057.
|
[15]
|
B. Kummer, Newton's method for non-differentiable functions, Advances in Mathematical Optimization, 45 (1988), 114-125.
|
[16]
|
P. L. Loh and M. J. Wainwright, Regularized m-estimators with nonconvexity: Statistical and algorithmic theory for local optima, The Journal of Machine Learning Research, 16 (2015), 559-616.
|
[17]
|
S. Lv, H. Lin, H. Lian and J. Huang, Oracle inequalities for sparse additive quantile regression in reproducing kernel hilbert space, The Annals of Statistics, 46 (2018), 781-813.
doi: 10.1214/17-AOS1567.
|
[18]
|
L. Qi and J. Sun, A nonsmooth version of newton's method, Mathematical Programming, 58 (1993), 353-367.
doi: 10.1007/BF01581275.
|
[19]
|
Y. Shi, J. Huang, Y. Jiao and Q. Yang, A semismooth newton algorithm for high-dimensional nonconvex sparse learning, IEEE Transactions on Neural Networks and Learning Systems, 2019.
doi: 10.1109/TNNLS.2019.2935001.
|
[20]
|
A. Tan and J. Huang, Bayesian inference for high-dimensional linear regression under mnet priors, The Canadian Journal of Statistics, 44 (2016), 180-197.
doi: 10.1002/cjs.11283.
|
[21]
|
R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[22]
|
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494.
doi: 10.1023/A:1017501703105.
|
[23]
|
M. J. Wainwright, Sharp thresholds for high-dimensional and noisy sparsity recovery using $\ell_1$-constrained quadratic programming (lasso), IEEE Transactions on Information Theory, 55 (2009), 2183-2202.
doi: 10.1109/TIT.2009.2016018.
|
[24]
|
L. Wang, Y. Kim and R. Li, Calibrating non-convex penalized regression in ultra-high dimension, The Annals of Statistics, 41 (2013), 2505-2536.
doi: 10.1214/13-AOS1159.
|
[25]
|
C. Yi and J. Huang, Semismooth newton coordinate descent algorithm for elastic-net penalized huber loss regression and quantile regression, Journal of Computational and Graphical Statistics, 26 (2017), 547-557.
doi: 10.1080/10618600.2016.1256816.
|
[26]
|
X. Yuan, P. Li and T. Zhang, Gradient hard thresholding pursuit for sparsity-constrained optimization, The 31st International Conference on Machine Learning, PMLR, 32 (2014), 127-135.
|
[27]
|
C. H. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38 (2010), 894-942.
doi: 10.1214/09-AOS729.
|
[28]
|
C. H. Zhang and J. Huang, The sparsity and bias of the lasso selection in high-dimensional linear regression, The Annals of Statistics, 36 (2008), 1567-1594.
doi: 10.1214/07-AOS520.
|
[29]
|
C. H. Zhang and T. Zhang, A general theory of concave regularization for high-dimensional sparse estimation problems, Statistical Science, 27 (2012), 576-593.
doi: 10.1214/12-STS399.
|
[30]
|
P. Zhao and B. Yu, On model selection consistency of lasso, Journal of Machine Learning Research, 7 (2006), 2541-2563.
|
[31]
|
H. Zou, The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101 (2006), 1418-1429.
doi: 10.1198/016214506000000735.
|
[32]
|
H. Zou and H. H. Zhang, On the adaptive elastic-net with a diverging number of parameters, The Annals of Statistics, 37 (2009), 1733-1751.
doi: 10.1214/08-AOS625.
|