[1]
|
Y. Chen, Y. Yang and T. Jiang, Uniform asymptotics for finite-time ruin probability of a bidimensional risk model, J. Math. Anal. Appl., 469 (2019), 525-536.
doi: 10.1016/j.jmaa.2018.09.025.
|
[2]
|
Y. Chen, K. C. Yuen and K. W. Ng, Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims, Appl. Stochastic Models Bus. Ind., 27 (2011), 290-300.
doi: 10.1002/asmb.834.
|
[3]
|
D. Cheng, Uniform asymptotics for the finite-time ruin probability of a generalized bidimensional risk model with Brownian perturbations, Stochastics, 93 (2021), 56-71.
doi: 10.1080/17442508.2019.1708362.
|
[4]
|
D. Cheng and C. Yu, Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strongly subexponential claims, Stochastics, 91 (2019), 643-656.
doi: 10.1080/17442508.2018.1539088.
|
[5]
|
D. Cheng, Y. Yang and X. Wang, Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims, Japan J. Indust. Appl. Math., 37 (2020), 657-675.
doi: 10.1007/s13160-020-00418-y.
|
[6]
|
D.B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stoch. Process. Appl., 49 (1994), 75–98.
doi: 10.1016/0304-4149(94)90113-9.
|
[7]
|
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997.
doi: 10.1007/978-3-642-33483-2.
|
[8]
|
S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distributions, Springer, New York, 2011.
doi: 10.1007/978-1-4614-7101-1.
|
[9]
|
H. Hult, F. Lindskog, T. Mikosch and G. Samorodnitsky, Functional large deviations for multivariate regularly varying random walks, Ann. Appl. Probab., 15 (2005), 2651-2680.
doi: 10.1214/105051605000000502.
|
[10]
|
Z. Hu, and B. Jiang, On joint ruin probabilities of a two-dimensional risk model with constant interest rate, J. Appl. Prob., 50 (2013), 309-322.
doi: 10.1239/jap/1371648943.
|
[11]
|
J. Li, The infinite-time ruin probability for a bidimensional renewal risk model with constant force of interest and dependent claims, Comm. Stat. Theory Methods., 46 (2017a), 1959-1971.
doi: 10.1080/03610926.2015.1030428.
|
[12]
|
J. Li, A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation, Statist. Probab. Lett., 127 (2017b), 49-55.
doi: 10.1016/j.spl.2017.03.028.
|
[13]
|
J. Li, A revisit to asymptotic ruin probabilities for a bidimensional renewal risk model, Statist. Probab. Lett., 140 (2018), 23-32.
doi: 10.1016/j.spl.2018.04.003.
|
[14]
|
O. V. Sarmanov, Generalized normal correlation and two-dimensional Fréchet classes, Dokl. Akad. Nauk., 168 (1966), 32-35.
|
[15]
|
C. Stein, A note on cumulative sums, Ann. Math. Statist., 17 (1946), 498-499.
doi: 10.1214/aoms/1177730890.
|
[16]
|
S. Wang, H. Qian, H. Sun and Geng, B., Uniform asymptotics for ruin probabilities of a non standard bidimensional perturbed risk model with subexponential claims, Comm. Stat., Theory Methods, 2021, 1-16.
doi: 10.1080/03610926.2021.1882496.
|
[17]
|
H. Yang and J. Li, Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims, Insurance Math. Econom., 58 (2014), 185-192.
doi: 10.1016/j.insmatheco.2014.07.007.
|
[18]
|
H. Yang and J. Li, Asymptotic ruin probabilities for a bidimensional renewal risk model, Stochastics, 89 (2017), 687-708.
doi: 10.1080/17442508.2016.1276909.
|
[19]
|
R. B. Nelsen, An Introduction to Copulas, Springer Science & Business Media, 2006.
doi: 10.1007/s11229-005-3715-x.
|
[20]
|
Y. Yang, K. Wang, J. Liu and Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, J. Ind. Manag. Optim., 15 (2019), 481-505.
doi: 10.3934/jimo.2018053.
|
[21]
|
Y. Yang, T. Zhang and K. C. Yuen, Approximations for finite-time ruin probability in a dependent discrete-time risk model with CMC simulations, J. Comput. Appl. Math., 321 (2017), 143-159.
doi: 10.1016/j.cam.2017.02.004.
|