[1]
|
B. W. Bader and T. G. Kolda, et al., Matlab tensor toolbox version 2.6, 2015.
|
[2]
|
X. Bai, Z. Huang and L. Qi, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.
|
[3]
|
M. Che, L. Qi and Y. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475-487.
doi: 10.1007/s10957-015-0773-1.
|
[4]
|
B. Chen and P. T. Harker, A noninterior-point continuation method for linear complementarity problem, SIAM J. Matrix Anal. Appl., 14 (1993), 1168-1190.
doi: 10.1137/0614081.
|
[5]
|
B. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems, SIAM J. Optim., 7 (1997), 403-420.
doi: 10.1137/S1052623495280615.
|
[6]
|
B. Chen and N. Xiu, A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on chen-mangasarian smoothing functions, SIAM J. Optim., 9 (1999), 605-623.
doi: 10.1137/S1052623497316191.
|
[7]
|
C. Chen and L. Zhang, Finding Nash equilibrium for a class of multi-person noncooperative games via solving tensor complementarity problem, Appl. Numer. Math., 145 (2019), 458-468.
doi: 10.1016/j.apnum.2019.05.013.
|
[8]
|
X. Chen, L. Qi and D. Sun, Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities, Math. Comp., 67 (1998), 519-540.
doi: 10.1090/S0025-5718-98-00932-6.
|
[9]
|
R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.
|
[10]
|
S. Du and L. Zhang, A mixed integer programming approach to the tensor complementarity problem, J. Global Optim., 73 (2019), 789-800.
doi: 10.1007/s10898-018-00731-4.
|
[11]
|
F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II, Springer, New York, 2003.
|
[12]
|
A. Fischer, Solution of monotone complementarity problems with locally lipschitz functions, Math. Program., 76 (1997), 513-532.
doi: 10.1007/BF02614396.
|
[13]
|
A. Fischer, A special Newton-type optimization method, Optim., 24 (1992), 269-284.
doi: 10.1080/02331939208843795.
|
[14]
|
M.-S. Gowda, Polynomial complementarity problems, Pac. J. Optim., 13 (2017), 227-241.
|
[15]
|
M.-S. Gowda and D. Sossa, Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones, Math. Program., 177 (2019), 149-171.
doi: 10.1007/s10107-018-1263-7.
|
[16]
|
J. Han, N. Xiu and H. Qi, Nonlinear Complementarity Theory and Algorithms, Shanghai Science and Technology Press, Shanghai (in Chinese), 2006.
|
[17]
|
P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Program., 48 (1990), 161-220.
doi: 10.1007/BF01582255.
|
[18]
|
K. Hotta and A. Yoshise, Global convergence of a class of non-interior point algorithms using the Chen-Harker-Kanzow-Smale functions for nonlinear complementarity problems, Math. Program., 86 (1999), 105-133.
doi: 10.1007/s101070050082.
|
[19]
|
Z. Huang, J. Han, D. Xu and L. Zhang, The non-interior continuation methods for solving the $P_0$-function nonlinear complementarity problem, Sci. China Math., 44 (2001), 1107-1114.
doi: 10.1007/BF02877427.
|
[20]
|
Z. Huang and L. Qi, Formulating an $n$-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557-576.
doi: 10.1007/s10589-016-9872-7.
|
[21]
|
Z. Huang and L. Qi, Tensor complementarity problems – part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.
doi: 10.1007/s10957-019-01566-z.
|
[22]
|
Z. Huang and L. Qi, Tensor complementarity problems – part III: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.
doi: 10.1007/s10957-019-01573-0.
|
[23]
|
Z. Huang, L. Qi and D. Sun, Sub-quadratic convergence of a smoothing Newton algorithm for the $P_0$ and monotone LCP, Math. Program., 99 (2004), 423-441.
doi: 10.1007/s10107-003-0457-8.
|
[24]
|
Z. Huang, Y. Suo and J. Wang, On Q-tensors, Pac. J. Optim., 16 (2020), 67-86.
|
[25]
|
C. Kanzow, Some non-interior continuation methods for linear complementarity problems, SIAM J. Matrix Anal. Appl., 17 (1996), 851-868.
doi: 10.1137/S0895479894273134.
|
[26]
|
X. Ma, M. Zheng and Z. Huang, A Note on the nonemptiness and compactness of solution sets of weakly homogeneous variational inequalities, SIAM J. Optim., 30 (2020), 132-148.
doi: 10.1137/19M1237478.
|
[27]
|
H. Qi, A regularized smoothing Newton method for box constrained variational inequality problems with $P_0$-functions, SIAM J. Optim., 10 (2000), 315-330.
doi: 10.1137/S1052623497324047.
|
[28]
|
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.
|
[29]
|
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018.
doi: 10.1007/978-981-10-8058-6.
|
[30]
|
L. Qi and Z. Huang, Tensor complementarity problems – part II: Solution methods, J. Optim. Theory Appl., 183 (2019), 365-385.
doi: 10.1007/s10957-019-01568-x.
|
[31]
|
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
|
[32]
|
L. Qi and D. Sun, Improving the convergence of non-interior point algorithm for nonlinear complementarity problems, Math. Comp., 69 (2000), 283-304.
doi: 10.1090/S0025-5718-99-01082-0.
|
[33]
|
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math. Program., 87 (2000), 1-35.
doi: 10.1007/s101079900127.
|
[34]
|
Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
doi: 10.1007/s10957-014-0616-5.
|
[35]
|
Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 (2017), 308-323.
|
[36]
|
Y. Song and G. Yu, Properties of solution set of tensor complementarity problem, J. Optim. Theory Appl., 170 (2016), 85-96.
doi: 10.1007/s10957-016-0907-0.
|
[37]
|
D. Sun, A regularization Newton method for solving nonlinear complementarity problems, Appl. Math. Optim., 40 (1999), 315-339.
doi: 10.1007/s002459900128.
|
[38]
|
Y. Wang, Z. Huang and L. Qi, Global uniqueness and solvability of tensor variational inequalities, J. Optim. Theory Appl., 177 (2018), 137-152.
doi: 10.1007/s10957-018-1233-5.
|
[39]
|
L. Zhang and Z. Gao, Superlinear/quadratic one-step smoothing Newton method for $P_0$-NCP without strict complementarity, Math. Meth. Oper. Res., 56 (2002), 231-241.
doi: 10.1007/s001860200221.
|
[40]
|
L. Zhang, L. Qi and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339.
|
[41]
|
L. Zhang, S.-Y. Wu and T. Gao, Improved smoothing Newton methods for $P_0$ nonlinear complementarity problems, Appl. Math. Comput., 215 (2009), 324-332.
doi: 10.1016/j.amc.2009.04.088.
|
[42]
|
X. Zhao and J. Fan, A semidefinite method for tensor complementarity problems, Optim. Meth. Softw., 34 (2019), 758-769.
doi: 10.1080/10556788.2018.1439489.
|