In this paper, we study the quadratic tensor eigenvalue complementarity problem (QTEiCP). By a randomization process, the quadratic complementarity(QC) eigenvalues are classified into two cases. For each case, the QTEiCP is formulated as an equivalent generalized moment problem. The QC eigenvectors can be computed in order. Each of them can be solved by a sequence of semidefinite relaxations. We prove that such a sequence converges in finitely many steps for generic tensors.
Citation: |
[1] |
F. Bugarin, D. Henrion and J. B. Lasserre, Minimizing the sum of many rational functions, Math. Prog. Comp., 8 (2016), 83-111.
doi: 10.1007/s12532-015-0089-z.![]() ![]() ![]() |
[2] |
Z. Chen and L. Qi, A semismooth Newton method for tensor eigenvalue complementarity problem, Comput. Optim. Appl., 65 (2016), 109-126.
doi: 10.1007/s10589-016-9838-9.![]() ![]() ![]() |
[3] |
Z. Chen, Q. Yang and L. Ye, Generalized eigenvalue complementarity problem for tensors, Pac. J. Optim., 13 (2017), 527-545.
![]() ![]() |
[4] |
R. Curto and L. Fialkow, Truncated K-moment problems in several variables, J. Operator Theory, 54 (2005), 189-226.
![]() ![]() |
[5] |
J. Fan, J. Nie and R. Zhao, The maximum tensor complementarity eigenvalues, Optim. Methods Softw., 35 (2020), 1179-1190.
doi: 10.1080/10556788.2018.1528251.![]() ![]() ![]() |
[6] |
J. Fan, J. Nie and A. Zhou, Tensor eigenvalue complementarity problems, Math. Program., 170 (2018), 507-539.
doi: 10.1007/s10107-017-1167-y.![]() ![]() ![]() |
[7] |
J. W. Helton and J. Nie, A semidefinite approach for truncated K-moment problems, Found. Comput. Math., 12 (2012), 851-881.
doi: 10.1007/s10208-012-9132-x.![]() ![]() ![]() |
[8] |
D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in GloptiPoly, Positive Polynomials in Control, 312 (2005), 293-310.
doi: 10.1007/10997703_15.![]() ![]() ![]() |
[9] |
D. Henrion, J. Lasserre and J. Löefberg, GloptiPoly 3: Moments, optimization and semidefinite programming, Optim. Methods Softw., 24 (2009), 761-779.
doi: 10.1080/10556780802699201.![]() ![]() ![]() |
[10] |
J. B. Lasserre, A semidefinite programming approach to the generalized problem of moments, Math. Program, 112 (2008), 65-92.
doi: 10.1007/s10107-006-0085-1.![]() ![]() ![]() |
[11] |
J. B. Lasserre, Moments, Positive Polynomials and Their Applications, Imperial College Press, London, 2010.
![]() ![]() |
[12] |
J. B. Lasserre, Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9781107447226.![]() ![]() ![]() |
[13] |
J. Lasserre, M. Laurent and P. Rostalski, Semidefinite characterization and computation of zero-dimensional real radical ideals, Found. Comput. Math., 8 (2008), 607-647.
doi: 10.1007/s10208-007-9004-y.![]() ![]() ![]() |
[14] |
M. Laurent, Optimization over polynomials: Selected topics, Congress of Mathematicians—Seoul 2014, Ⅳ (2014), 843-869.
![]() ![]() |
[15] |
M. Laurent, Sums of squares, moment matrices and optimization over polynomials, Emerging Applications of Algebraic Geometry, IMA Volumes in Mathematics and its Applications, 149 (2009), 157–270.
doi: 10.1007/978-0-387-09686-5_7.![]() ![]() ![]() |
[16] |
Y. Li, S. Du and L. Zhang, Tensor quadratic eigenvalue complementarity problem, Pac. J. Optm., 17 (2021), 251-268.
![]() ![]() |
[17] |
C. Ling, H. He and L. Qi, On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63 (2016), 143-168.
doi: 10.1007/s10589-015-9767-z.![]() ![]() ![]() |
[18] |
C. Ling, H. He and L. Qi, Higher-order eigenvalue complementarity problems for tensors, Comput. Optim. Appl., 64 (2016), 149-176.
doi: 10.1007/s10589-015-9805-x.![]() ![]() ![]() |
[19] |
M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X.![]() ![]() ![]() |
[20] |
J. Nie, Certifying convergence of Lasserre's hierarchy via flat truncation, Math. Program., 142 (2013), 485-510.
doi: 10.1007/s10107-012-0589-9.![]() ![]() ![]() |
[21] |
J. Nie, Polynomial optimization with real varieties, SIAM J. Optim., 23 (2013), 1634-1646.
doi: 10.1137/120898772.![]() ![]() ![]() |
[22] |
J. Nie, The A-truncated K-moment problem, Found. Comput. Math., 14 (2014), 1243-1276.
doi: 10.1007/s10208-014-9225-9.![]() ![]() ![]() |
[23] |
J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math. Program., 153 (2015), 247-274.
doi: 10.1007/s10107-014-0797-6.![]() ![]() ![]() |
[24] |
L. Qi, G. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138.![]() ![]() ![]() |
[25] |
J. F. Sturm, SeDuMi 1.02: A MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11/12 (1999), 625-653.
doi: 10.1080/10556789908805766.![]() ![]() ![]() |
[26] |
X. Zhao and J. Fan, A semidefinte method for tensor complementarity problems, Optim. Methods Softw., 34 (2019), 758-769.
doi: 10.1080/10556788.2018.1439489.![]() ![]() ![]() |
[27] |
R. Zhao and J. Fan, Higher-degree tensor eigenvalue complementarity problems, Comput. Optim. Appl., 75 (2020), 799-816.
doi: 10.1007/s10589-019-00159-w.![]() ![]() ![]() |
[28] |
R. X. Zhao, A. W. Zhou and J. Y. Fan, The quadratic tensor eigenvalue complementarity problem (in Chinese), Sci. Sin. Math., (2021).
![]() |