\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A bi-level optimization model for the asset-liability management of insurance companies

  • *Corresponding author: Xiaowei Chen

    *Corresponding author: Xiaowei Chen 

The first author is supported by National Natural Science Foundation of China No. 61673225

Abstract Full Text(HTML) Figure(1) / Table(3) Related Papers Cited by
  • Different from traditional asset-liability management where only investment allocation is considered, this paper introduces policy product allocation into asset-liability management of insurance companies. In order to balance product allocation and investment allocation, a bi-level optimization model is employed. Since the decision-making environment of the two allocation processes is full of indeterminacy, the imprecise information of the model is measured by uncertain variables in order to deal with the lack of enough historical data. To solve this bi-level Optimization problem containing uncertain variables, an uncertain bilevel programming model is used. Furthermore, we simulate a scenario to compare the bi-level optimization approach with other approaches by virtue of hybrid intelligent algorithms.

    Mathematics Subject Classification: Primary: 90B50, 91B30; Secondary: 90C70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Stackelberg Competition

    Table 1.  Investment Items Parameters

    Investment Items $i$ Decision Variables Yield rate $\xi_{i}$ Beta-Value $\beta_{i}$ Unsystematic risk $\sigma_{i}$
    Risk asset 1 $1$ $A_{1}$ ${\mathcal{N}}(0.1,0.01)$ $0.9$ $0.01$
    Risk asset 2 $2$ $A_{2}$ ${\mathcal{N}}(0.08,0.005)$ $0.6$ $ 0.005$
    Risk-free asset $3$ $A_{3}$ $0.05$ $0.5$ $0$
     | Show Table
    DownLoad: CSV

    Table 2.  Policy Products Parameters

    Policy Products $j$ Decision Variables Profit Margin $r_{j}$ drawing coefficient $\theta_{j}$ sale coefficient $s_{j}$
    Policy 1 $1$ $P_{1}$ ${\mathcal{L}}(0.1,0.12 )$ $30\%$ $1$
    Policy 2 $2$ $P_{2}$ ${\mathcal{L}}(0.08,0.11)$ $40\%$ $1.1$
     | Show Table
    DownLoad: CSV

    Table 3.  Optimal Solutions of Different Programmings6

    Approaches Programmings Gross Profit Policy Allocation $\bf{P}$ Investment Allocation $\bf{A}$
    Stackelberg Competition (11) $137.2$ $(0, 1100)$ $(162, 0,277.3)$
    Decentralized Decision Making (12), (13) $135$ $(1000, 0)$ $(50,250, 0)$
    Centralized Decision Making7 (14) $134.8$ $(0, 1100)$ $(165, 0,275)$
     | Show Table
    DownLoad: CSV
  • [1] N. Al Najjar and J. Weinstein, The ambiguity aversion literature: A critical assessment, Econ. Philos., 25 (2009), 249-284. 
    [2] R. BhattacharyyaA. Chatterjee and S. Kar, Uncertainty theory based novel multi-objective optimization technique using embedding theorem with application to R & D project portfolio selection, Appl. Math., 1 (2010), 189-199. 
    [3] J. Bracken and J. McGill, Mathematical programs with optimization problems in the constraints, Oper. Res., 21 (1973), 37-44.  doi: 10.1287/opre.21.1.37.
    [4] D. R. Cariño and W. T. Ziemba, Formulation of the Russell-Yasuda Kasai financial planning model, Oper. Res., 46 (1998), 433-449.  doi: 10.1287/opre.46.4.433.
    [5] X. ChenY. Liu and D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.
    [6] M. I. Cusy and W. T. Ziemba, A Bank asset and liability management model, Oper. Res., 34 (1986), 356-376. 
    [7] H. G. Deallenbach and S. A. Archer, Optimal bank liquidity: A multi-period stochastic model, J. Financ. Quant. Anal., 4 (1969), 329-343. 
    [8] G. D. Eppen and E. F. Fama, Three assets cash balance and dynamic portfolio problems, Manage. Sci., 17 (1971), 311-319. 
    [9] L. Epstein, A definition of uncertainty aversion, Rev. Econ. Stud., 66 (1999), 579-608.  doi: 10.1111/1467-937X.00099.
    [10] J. J. Judice and A. Faustion, The linear-quadratic bilevel programming problem, INFOR, 32 (1994), 87-98. 
    [11] P. KlibanoffM. Marinacci and S. Mukerji, A smooth model of decision making under uncertainy, Econometrica, 73 (2005), 1849-1892.  doi: 10.1111/j.1468-0262.2005.00640.x.
    [12] S. LiJ. Peng and B. Zhang, The uncertain premium principle based on the distortion function, Insur. Math. Econ., 53 (2013), 317-324.  doi: 10.1016/j.insmatheco.2013.06.005.
    [13] J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Rev. Econ. Stat., 47 (1965), 317-324. 
    [14] B. Liu, Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms, Comput. Math. Appl., 36 (1998), 79-89.  doi: 10.1016/S0898-1221(98)00174-6.
    [15] B. LiuUncertainty Theory, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2004. 
    [16] B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10. 
    [17] B. LiuTheory and Practice of Uncertain Programming, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2009. 
    [18] B. LiuUncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. 
    [19] B. Liu, Why is there a need for uncertainty theory, J. Uncertain Systems, 6 (2012), 3-10. 
    [20] Y. Liu and M. Ha, Expected value of function of uncertain variables, J. Uncertain Systems, 4 (2010), 181-186. 
    [21] H. Markowitz, Portfolio Selection, New York; Chapman & Hall, Ltd., London 1959
    [22] J. M. MulveyG. Gould and C. Morgan, Asset and liability management system for Towers Perrin-Tillinghast, Interfaces, 7 (30), 96-114. 
    [23] J. Mossin, Equilibrium in a capital asset market, Econometrica, 34 (1966), 768-783. 
    [24] D. H. Pyle, On the theory of financial intermedian, J. Financ., 26 (1971), 737-746. 
    [25] G. Savard and J. Gauvin, The steepest descent direction for the nonlinear bilevel programming problem, Oper. Res. Lett., 15 (1994), 265-272.  doi: 10.1016/0167-6377(94)90086-8.
    [26] W. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk, J. Financ., 19 (1964), 425-442. 
    [27] H. V. StackelbergMarktform und Gleichgewicht, Springer-Verlag, Wien & Berlin, 1934. 
    [28] J. L. Treynor and K. K. Mazuy, Can mutual funds outguess the market, Harvard Bus. Rev., 8 (1966), 131-136. 
    [29] C. Wang, Y. Ni and X. Yang, The inventory replenishment policy in an uncertain production-inventory-routing system, J. Ind. Manag. Optim..
  • 加载中

Figures(1)

Tables(3)

SHARE

Article Metrics

HTML views(522) PDF downloads(280) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return