# American Institute of Mathematical Sciences

• Previous Article
Research on corporate social responsibility and product quality in an outsourcing supply chain
• JIMO Home
• This Issue
• Next Article
Fresh agricultural products supply chain coordination considering consumers' dual preferences under carbon cap-and-trade mechanism
doi: 10.3934/jimo.2022093
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Solving tensor complementarity problems with $Z$-tensors via a weighted fixed point method

 School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author: Yong Wang

Received  December 2021 Revised  April 2022 Early access June 2022

Fund Project: The work is partly supported by the National Natural Science Foundation of China (Grants No. 12171357, 11871051)

In this paper, we focus on solving the tensor complementarity problems with $Z$-tensors. To this end, a weighted fixed point method is proposed for solving such tensor complementarity problems. Then, it is showed that the iterative sequence generated by the algorithm is monotonically decreasing with the help of $Z$-tensors. Moreover, the limit point of the iterative sequence is a solution of the corresponding tensor complementarity problem. Finally numerical experiments show the effectiveness of the algorithm and testify the theoretical conclusions.

Citation: Liyuan Tian, Yong Wang. Solving tensor complementarity problems with $Z$-tensors via a weighted fixed point method. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2022093
##### References:
 [1] B. H. Ahn, Solution of nonsymmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 33 (1981), 175-185.  doi: 10.1007/BF00935545. [2] X.-L. Bai, Z.-H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.  doi: 10.1007/s10957-016-0903-4. [3] P.-F. Dai, A fixed point iterative method for tensor complementarity problems, J. Sci. Comput., 84 (2020), Paper No. 49, 20 pp. doi: 10.1007/s10915-020-01299-6. [4] S. Du and L. Zhang, A mixed integer programming approach to the tensor complementarity problem, J. Global Optim., 73 (2019), 789-800.  doi: 10.1007/s10898-018-00731-4. [5] M. S. Gowda, Z. Luo, L. Qi and N. Xiu, Z-tensors and complementarity problems, arXiv: 1510.07933v2, 2015. [6] H.-B. Guan and D.-H. Li, Linearized methods for tensor complementarity problems, J. Optim. Theory Appl., 184 (2020), 972-987.  doi: 10.1007/s10957-019-01627-3. [7] L. Han, A continuation method for tensor complementarity problems, J. Optim. Theory Appl., 180 (2019), 949-963.  doi: 10.1007/s10957-018-1422-2. [8] Z.-H. Huang and L. Qi, Formulating an $n$-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557-576.  doi: 10.1007/s10589-016-9872-7. [9] Z.-H. Huang and L. Qi, Tensor complementarity problems-Part Ⅰ: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.  doi: 10.1007/s10957-019-01566-z. [10] Z.-H. Huang and L. Qi, Tensor complementarity problems-Part Ⅲ: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.  doi: 10.1007/s10957-019-01573-0. [11] D.-H. Li, C.-D. Chen and H.-B. Guan, A lower dimensional linear equation approach to the M-tensor complementarity problem, Calcolo, 58, (2021), Paper No. 5, 21 pp. doi: 10.1007/s10092-021-00397-7. [12] D. Liu, W. Li and S.-W. Vong, Tensor complementarity problems: The GUS-property and an algorithm, Linear Multilinear Algebra, 66 (2018), 1726-1749.  doi: 10.1080/03081087.2017.1369929. [13] X. Liu and Y. Wang, Weakening convergence conditions of a potential reduction method for tensor complementarity problems, Journal of Industrial and Management Optimization, 2021. doi: 10.3934/jimo.2021080. [14] Z. Luo, L. Qi and N. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optim. Lett., 11 (2017), 471-482.  doi: 10.1007/s11590-016-1013-9. [15] O. L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 22 (1977), 465-485.  doi: 10.1007/BF01268170. [16] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X. [17] Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.  doi: 10.1007/s10957-014-0616-5. [18] Y. Wang, Z.-H. Huang and X.-L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optim. Methods Softw., 31 (2016), 815-828.  doi: 10.1080/10556788.2016.1180386. [19] S.-L. Xie, D.-H. Li and H.-R. Xu, An iterative method for finding the least solution to the tensor complementarity problem, J. Optim. Theory Appl., 175 (2017), 119-136.  doi: 10.1007/s10957-017-1157-5. [20] S.-L. Xie and H.-R. Xu, A two-level additive Schwarz method for a kind of tensor complementarity problem, Linear Algebra Appl., 584 (2020), 394-408.  doi: 10.1016/j.laa.2019.09.025. [21] H.-R. Xu, D.-H. Li and S.-L. Xie, An equivalent tensor equation to the tensor complementarity problem with positive semi-definite $Z$-tensor, Optim. Lett., 13 (2019), 685-694.  doi: 10.1007/s11590-018-1268-4. [22] K. Zhang, H. Chen and P. Zhao, A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429-443.  doi: 10.3934/jimo.2018049. [23] X. Zhao and J. Fan, A semidefinite method for tensor complementarity problems, Optim. Methods Softw., 34 (2019), 758-769.  doi: 10.1080/10556788.2018.1439489.

show all references

##### References:
 [1] B. H. Ahn, Solution of nonsymmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 33 (1981), 175-185.  doi: 10.1007/BF00935545. [2] X.-L. Bai, Z.-H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.  doi: 10.1007/s10957-016-0903-4. [3] P.-F. Dai, A fixed point iterative method for tensor complementarity problems, J. Sci. Comput., 84 (2020), Paper No. 49, 20 pp. doi: 10.1007/s10915-020-01299-6. [4] S. Du and L. Zhang, A mixed integer programming approach to the tensor complementarity problem, J. Global Optim., 73 (2019), 789-800.  doi: 10.1007/s10898-018-00731-4. [5] M. S. Gowda, Z. Luo, L. Qi and N. Xiu, Z-tensors and complementarity problems, arXiv: 1510.07933v2, 2015. [6] H.-B. Guan and D.-H. Li, Linearized methods for tensor complementarity problems, J. Optim. Theory Appl., 184 (2020), 972-987.  doi: 10.1007/s10957-019-01627-3. [7] L. Han, A continuation method for tensor complementarity problems, J. Optim. Theory Appl., 180 (2019), 949-963.  doi: 10.1007/s10957-018-1422-2. [8] Z.-H. Huang and L. Qi, Formulating an $n$-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557-576.  doi: 10.1007/s10589-016-9872-7. [9] Z.-H. Huang and L. Qi, Tensor complementarity problems-Part Ⅰ: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.  doi: 10.1007/s10957-019-01566-z. [10] Z.-H. Huang and L. Qi, Tensor complementarity problems-Part Ⅲ: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.  doi: 10.1007/s10957-019-01573-0. [11] D.-H. Li, C.-D. Chen and H.-B. Guan, A lower dimensional linear equation approach to the M-tensor complementarity problem, Calcolo, 58, (2021), Paper No. 5, 21 pp. doi: 10.1007/s10092-021-00397-7. [12] D. Liu, W. Li and S.-W. Vong, Tensor complementarity problems: The GUS-property and an algorithm, Linear Multilinear Algebra, 66 (2018), 1726-1749.  doi: 10.1080/03081087.2017.1369929. [13] X. Liu and Y. Wang, Weakening convergence conditions of a potential reduction method for tensor complementarity problems, Journal of Industrial and Management Optimization, 2021. doi: 10.3934/jimo.2021080. [14] Z. Luo, L. Qi and N. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optim. Lett., 11 (2017), 471-482.  doi: 10.1007/s11590-016-1013-9. [15] O. L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 22 (1977), 465-485.  doi: 10.1007/BF01268170. [16] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X. [17] Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.  doi: 10.1007/s10957-014-0616-5. [18] Y. Wang, Z.-H. Huang and X.-L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optim. Methods Softw., 31 (2016), 815-828.  doi: 10.1080/10556788.2016.1180386. [19] S.-L. Xie, D.-H. Li and H.-R. Xu, An iterative method for finding the least solution to the tensor complementarity problem, J. Optim. Theory Appl., 175 (2017), 119-136.  doi: 10.1007/s10957-017-1157-5. [20] S.-L. Xie and H.-R. Xu, A two-level additive Schwarz method for a kind of tensor complementarity problem, Linear Algebra Appl., 584 (2020), 394-408.  doi: 10.1016/j.laa.2019.09.025. [21] H.-R. Xu, D.-H. Li and S.-L. Xie, An equivalent tensor equation to the tensor complementarity problem with positive semi-definite $Z$-tensor, Optim. Lett., 13 (2019), 685-694.  doi: 10.1007/s11590-018-1268-4. [22] K. Zhang, H. Chen and P. Zhao, A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429-443.  doi: 10.3934/jimo.2018049. [23] X. Zhao and J. Fan, A semidefinite method for tensor complementarity problems, Optim. Methods Softw., 34 (2019), 758-769.  doi: 10.1080/10556788.2018.1439489.
The relationship between $\gamma$ and the number of iterative with $\lambda = 0.5$. From left to right and from top to bottom, the 4 subgraphs are corresponding to $m = 3$, $m = 4$, $m = 5$ and $m = 6$, respectively
The relationship between $\eta$ and the number of iteration with $\lambda = 0.5$. From left to right and from top to bottom, the 4 subgraphs are corresponding to $m = 3$, $m = 4$, $m = 5$ and $m = 6$, respectively
Numerical results for Example 4.1
 $q$ $(177.8912, 0)^\top$ $(-8.2037,166.0649)^\top$ $(-30.8545, 0)^\top$ $x^0$ $(4.3398, 7.8482)^\top$ $(5.2790, 2.5602)^\top$ $(58.1740, 9.9800)^\top$ $x^*$ $(2.6254, 7.8482)^\top$ $(2.8642, 0.0000)^\top$ $(17.9916, 9.8800)^\top$ $\lambda=0.2$ IT 122 237 138 Err $8.801848\mathrm{e}-13$ $9.918555\mathrm{e}-13$ $9.308110\mathrm{e}-13$ Val $4.857622\mathrm{e}-11$ $1.395496\mathrm{e}-09$ $2.412048\mathrm{e}-09$ $\lambda=0.5$ IT 42 80 47 Err $5.382361\mathrm{e}-13$ $9.645002\mathrm{e}-13$ $6.323830\mathrm{e}-13$ Val $7.461785\mathrm{e}-12$ $3.866887\mathrm{e}-10$ $4.106157\mathrm{e}-10$ $\lambda=0.8$ IT 19 36 21 Err $5.102585\mathrm{e}-13$ $8.295835\mathrm{e}-13$ $7.709389\mathrm{e}-13$ Val $1.790828\mathrm{e}-12$ $1.114540\mathrm{e}-10$ $1.252813\mathrm{e}-10$
 $q$ $(177.8912, 0)^\top$ $(-8.2037,166.0649)^\top$ $(-30.8545, 0)^\top$ $x^0$ $(4.3398, 7.8482)^\top$ $(5.2790, 2.5602)^\top$ $(58.1740, 9.9800)^\top$ $x^*$ $(2.6254, 7.8482)^\top$ $(2.8642, 0.0000)^\top$ $(17.9916, 9.8800)^\top$ $\lambda=0.2$ IT 122 237 138 Err $8.801848\mathrm{e}-13$ $9.918555\mathrm{e}-13$ $9.308110\mathrm{e}-13$ Val $4.857622\mathrm{e}-11$ $1.395496\mathrm{e}-09$ $2.412048\mathrm{e}-09$ $\lambda=0.5$ IT 42 80 47 Err $5.382361\mathrm{e}-13$ $9.645002\mathrm{e}-13$ $6.323830\mathrm{e}-13$ Val $7.461785\mathrm{e}-12$ $3.866887\mathrm{e}-10$ $4.106157\mathrm{e}-10$ $\lambda=0.8$ IT 19 36 21 Err $5.102585\mathrm{e}-13$ $8.295835\mathrm{e}-13$ $7.709389\mathrm{e}-13$ Val $1.790828\mathrm{e}-12$ $1.114540\mathrm{e}-10$ $1.252813\mathrm{e}-10$
Numerical results for Example 4.3 (ⅰ)
 $k$ $x^k$ Err Val 1 $(6.9596\mathrm{e}+00, 3.7592\mathrm{e}+00)$ $4.6777\mathrm{e}-01$ $1.8146\mathrm{e}+02$ 2 $(6.4918\mathrm{e}+00, 3.7592\mathrm{e}+00)$ $6.2133\mathrm{e}-01$ $2.0821\mathrm{e}+02$ 3 $(5.8717\mathrm{e}+00, 3.7199\mathrm{e}+00)$ $8.7813\mathrm{e}-01$ $2.2988\mathrm{e}+02$ 4 $(4.9991\mathrm{e}+00, 3.6220\mathrm{e}+00)$ $1.3984\mathrm{e}+00$ $2.2460\mathrm{e}+02$ 5 $(3.6133\mathrm{e}+00, 3.4348\mathrm{e}+00)$ $1.1093\mathrm{e}+00$ $1.9417\mathrm{e}+02$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ 83 $(6.5725\mathrm{e}-12, 9.3919\mathrm{e}-12)$ $3.3575\mathrm{e}-12$ $4.8035\mathrm{e}-10$ 84 $(4.6474\mathrm{e}-12, 6.6410\mathrm{e}-12)$ $2.3741\mathrm{e}-12$ $3.3966\mathrm{e}-10$ 85 $(3.2862\mathrm{e}-12, 4.6959\mathrm{e}-12)$ $1.6787\mathrm{e}-12$ $2.4018\mathrm{e}-10$ 86 $(2.3237\mathrm{e}-12, 3.3205\mathrm{e}-12)$ $1.1871\mathrm{e}-12$ $1.6983\mathrm{e}-10$ 87 $(1.6431\mathrm{e}-12, 2.3480\mathrm{e}-12)$ $8.3937\mathrm{e}-13$ $1.2009\mathrm{e}-10$
 $k$ $x^k$ Err Val 1 $(6.9596\mathrm{e}+00, 3.7592\mathrm{e}+00)$ $4.6777\mathrm{e}-01$ $1.8146\mathrm{e}+02$ 2 $(6.4918\mathrm{e}+00, 3.7592\mathrm{e}+00)$ $6.2133\mathrm{e}-01$ $2.0821\mathrm{e}+02$ 3 $(5.8717\mathrm{e}+00, 3.7199\mathrm{e}+00)$ $8.7813\mathrm{e}-01$ $2.2988\mathrm{e}+02$ 4 $(4.9991\mathrm{e}+00, 3.6220\mathrm{e}+00)$ $1.3984\mathrm{e}+00$ $2.2460\mathrm{e}+02$ 5 $(3.6133\mathrm{e}+00, 3.4348\mathrm{e}+00)$ $1.1093\mathrm{e}+00$ $1.9417\mathrm{e}+02$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ 83 $(6.5725\mathrm{e}-12, 9.3919\mathrm{e}-12)$ $3.3575\mathrm{e}-12$ $4.8035\mathrm{e}-10$ 84 $(4.6474\mathrm{e}-12, 6.6410\mathrm{e}-12)$ $2.3741\mathrm{e}-12$ $3.3966\mathrm{e}-10$ 85 $(3.2862\mathrm{e}-12, 4.6959\mathrm{e}-12)$ $1.6787\mathrm{e}-12$ $2.4018\mathrm{e}-10$ 86 $(2.3237\mathrm{e}-12, 3.3205\mathrm{e}-12)$ $1.1871\mathrm{e}-12$ $1.6983\mathrm{e}-10$ 87 $(1.6431\mathrm{e}-12, 2.3480\mathrm{e}-12)$ $8.3937\mathrm{e}-13$ $1.2009\mathrm{e}-10$
Numerical results for Example 4.3 (ⅱ)
 $k$ $x^k$ Err Val 1 $(4.1635\mathrm{e}+00, 3.4391\mathrm{e}+00)$ $1.2195\mathrm{e}+00$ $2.9115\mathrm{e}+02$ 2 $(2.9440\mathrm{e}+00, 3.4391\mathrm{e}+00)$ $8.6832\mathrm{e}-01$ $2.2710\mathrm{e}+02$ 3 $(2.0818\mathrm{e}+00, 3.3369\mathrm{e}+00)$ $6.3071\mathrm{e}-01$ $1.7722\mathrm{e}+02$ 4 $(1.4720\mathrm{e}+00, 3.1756\mathrm{e}+00)$ $4.7134\mathrm{e}-01$ $1.3617\mathrm{e}+02$ 5 $(1.0409\mathrm{e}+00, 2.9851\mathrm{e}+00)$ $3.6426\mathrm{e}-01$ $1.0285\mathrm{e}+02$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ 103 $(1.8490\mathrm{e}-15, 1.4078\mathrm{e}+00)$ $2.3244\mathrm{e}-12$ $7.0445\mathrm{e}-11$ 104 $(1.3074\mathrm{e}-15, 1.4078\mathrm{e}+00)$ $1.7666\mathrm{e}-12$ $5.3529\mathrm{e}-11$ 105 $(9.2449\mathrm{e}-16, 1.4078\mathrm{e}+00)$ $1.3425\mathrm{e}-12$ $4.0675\mathrm{e}-11$ 106 $(6.5371\mathrm{e}-16, 1.4078\mathrm{e}+00)$ $1.0203\mathrm{e}-12$ $3.0910\mathrm{e}-11$ 107 $(4.6224\mathrm{e}-16, 1.4078\mathrm{e}+00)$ $7.7538\mathrm{e}-13$ $2.3488\mathrm{e}-11$
 $k$ $x^k$ Err Val 1 $(4.1635\mathrm{e}+00, 3.4391\mathrm{e}+00)$ $1.2195\mathrm{e}+00$ $2.9115\mathrm{e}+02$ 2 $(2.9440\mathrm{e}+00, 3.4391\mathrm{e}+00)$ $8.6832\mathrm{e}-01$ $2.2710\mathrm{e}+02$ 3 $(2.0818\mathrm{e}+00, 3.3369\mathrm{e}+00)$ $6.3071\mathrm{e}-01$ $1.7722\mathrm{e}+02$ 4 $(1.4720\mathrm{e}+00, 3.1756\mathrm{e}+00)$ $4.7134\mathrm{e}-01$ $1.3617\mathrm{e}+02$ 5 $(1.0409\mathrm{e}+00, 2.9851\mathrm{e}+00)$ $3.6426\mathrm{e}-01$ $1.0285\mathrm{e}+02$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ 103 $(1.8490\mathrm{e}-15, 1.4078\mathrm{e}+00)$ $2.3244\mathrm{e}-12$ $7.0445\mathrm{e}-11$ 104 $(1.3074\mathrm{e}-15, 1.4078\mathrm{e}+00)$ $1.7666\mathrm{e}-12$ $5.3529\mathrm{e}-11$ 105 $(9.2449\mathrm{e}-16, 1.4078\mathrm{e}+00)$ $1.3425\mathrm{e}-12$ $4.0675\mathrm{e}-11$ 106 $(6.5371\mathrm{e}-16, 1.4078\mathrm{e}+00)$ $1.0203\mathrm{e}-12$ $3.0910\mathrm{e}-11$ 107 $(4.6224\mathrm{e}-16, 1.4078\mathrm{e}+00)$ $7.7538\mathrm{e}-13$ $2.3488\mathrm{e}-11$
Numerical results for Example 4.3 (ⅲ)
 $k$ $x^k$ Err Val 1 $(2.5510\mathrm{e}+00, 5.0596\mathrm{e}+00)$ $7.4716\mathrm{e}-01$ $1.5451\mathrm{e}+02$ 2 $(1.8038\mathrm{e}+00, 5.0596\mathrm{e}+00)$ $6.2157\mathrm{e}-01$ $1.3847\mathrm{e}+02$ 3 $(1.2755\mathrm{e}+00, 4.7321\mathrm{e}+00)$ $7.5567\mathrm{e}-01$ $1.2059\mathrm{e}+02$ 4 $(9.0190\mathrm{e}-01, 4.0753\mathrm{e}+00)$ $1.1283\mathrm{e}+00$ $9.4788\mathrm{e}+01$ 5 $(6.3774\mathrm{e}-01, 2.9783\mathrm{e}+00)$ $8.9211\mathrm{e}-01$ $7.0090\mathrm{e}+01$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ 81 $(2.3201\mathrm{e}-12, 1.0835\mathrm{e}-11)$ $3.2455\mathrm{e}-12$ $2.6613\mathrm{e}-10$ 82 $(1.6405\mathrm{e}-12, 7.6616\mathrm{e}-12)$ $2.2949\mathrm{e}-12$ $1.8819\mathrm{e}-10$ 83 $(1.1600\mathrm{e}-12, 5.4176\mathrm{e}-12)$ $1.6227\mathrm{e}-12$ $1.3307\mathrm{e}-10$ 84 $(8.2027\mathrm{e}-13, 3.8308\mathrm{e}-12)$ $1.1474\mathrm{e}-12$ $9.4093\mathrm{e}-11$ 85 $(5.8002\mathrm{e}-13, 2.7088\mathrm{e}-12)$ $8.1137\mathrm{e}-13$ $6.6534\mathrm{e}-11$
 $k$ $x^k$ Err Val 1 $(2.5510\mathrm{e}+00, 5.0596\mathrm{e}+00)$ $7.4716\mathrm{e}-01$ $1.5451\mathrm{e}+02$ 2 $(1.8038\mathrm{e}+00, 5.0596\mathrm{e}+00)$ $6.2157\mathrm{e}-01$ $1.3847\mathrm{e}+02$ 3 $(1.2755\mathrm{e}+00, 4.7321\mathrm{e}+00)$ $7.5567\mathrm{e}-01$ $1.2059\mathrm{e}+02$ 4 $(9.0190\mathrm{e}-01, 4.0753\mathrm{e}+00)$ $1.1283\mathrm{e}+00$ $9.4788\mathrm{e}+01$ 5 $(6.3774\mathrm{e}-01, 2.9783\mathrm{e}+00)$ $8.9211\mathrm{e}-01$ $7.0090\mathrm{e}+01$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ 81 $(2.3201\mathrm{e}-12, 1.0835\mathrm{e}-11)$ $3.2455\mathrm{e}-12$ $2.6613\mathrm{e}-10$ 82 $(1.6405\mathrm{e}-12, 7.6616\mathrm{e}-12)$ $2.2949\mathrm{e}-12$ $1.8819\mathrm{e}-10$ 83 $(1.1600\mathrm{e}-12, 5.4176\mathrm{e}-12)$ $1.6227\mathrm{e}-12$ $1.3307\mathrm{e}-10$ 84 $(8.2027\mathrm{e}-13, 3.8308\mathrm{e}-12)$ $1.1474\mathrm{e}-12$ $9.4093\mathrm{e}-11$ 85 $(5.8002\mathrm{e}-13, 2.7088\mathrm{e}-12)$ $8.1137\mathrm{e}-13$ $6.6534\mathrm{e}-11$
Numerical results for Example 4.3 (ⅳ)
 $k$ $(x^k_1, x^k_2)$ Err Val $1$ $(3.6587\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $5.5271\mathrm{e}-03$ $6.0490\mathrm{e}+03$ $2$ $(3.6587\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $1.7842\mathrm{e}-02$ $3.4454\mathrm{e}+04$ $3$ $(3.6280\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $3.8265\mathrm{e}-02$ $1.0020\mathrm{e}+05$ $4$ $(3.4071\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $5.1704\mathrm{e}-02$ $1.7255\mathrm{e}+05$ $5$ $(3.0859\mathrm{e}-01, 1.0790\mathrm{e}+00)$ $4.6910\mathrm{e}-02$ $2.2193\mathrm{e}+05$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $485$ $(7.0361\mathrm{e}-22, 1.5492\mathrm{e}-11)$ $1.4605\mathrm{e}-12$ $2.2067\mathrm{e}-06$ $486$ $(6.3727\mathrm{e}-22, 1.4031\mathrm{e}-11)$ $1.3228\mathrm{e}-12$ $2.0014\mathrm{e}-06$ $487$ $(5.7719\mathrm{e}-22, 1.2709\mathrm{e}-11)$ $1.1981\mathrm{e}-12$ $1.8158\mathrm{e}-06$ $488$ $(5.2278\mathrm{e}-22, 1.1510\mathrm{e}-11)$ $1.0852\mathrm{e}-12$ $1.6461\mathrm{e}-06$ $489$ $(4.7349\mathrm{e}-22, 1.0425\mathrm{e}-11)$ $9.8286\mathrm{e}-13$ $1.4943\mathrm{e}-06$
 $k$ $(x^k_1, x^k_2)$ Err Val $1$ $(3.6587\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $5.5271\mathrm{e}-03$ $6.0490\mathrm{e}+03$ $2$ $(3.6587\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $1.7842\mathrm{e}-02$ $3.4454\mathrm{e}+04$ $3$ $(3.6280\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $3.8265\mathrm{e}-02$ $1.0020\mathrm{e}+05$ $4$ $(3.4071\mathrm{e}-01, 1.0791\mathrm{e}+00)$ $5.1704\mathrm{e}-02$ $1.7255\mathrm{e}+05$ $5$ $(3.0859\mathrm{e}-01, 1.0790\mathrm{e}+00)$ $4.6910\mathrm{e}-02$ $2.2193\mathrm{e}+05$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $485$ $(7.0361\mathrm{e}-22, 1.5492\mathrm{e}-11)$ $1.4605\mathrm{e}-12$ $2.2067\mathrm{e}-06$ $486$ $(6.3727\mathrm{e}-22, 1.4031\mathrm{e}-11)$ $1.3228\mathrm{e}-12$ $2.0014\mathrm{e}-06$ $487$ $(5.7719\mathrm{e}-22, 1.2709\mathrm{e}-11)$ $1.1981\mathrm{e}-12$ $1.8158\mathrm{e}-06$ $488$ $(5.2278\mathrm{e}-22, 1.1510\mathrm{e}-11)$ $1.0852\mathrm{e}-12$ $1.6461\mathrm{e}-06$ $489$ $(4.7349\mathrm{e}-22, 1.0425\mathrm{e}-11)$ $9.8286\mathrm{e}-13$ $1.4943\mathrm{e}-06$
Numerical results for Example 4.4
 $(m, n)$ Algorithm 3.1 Linearized method AveIt AveCpu AveErr AveIt AveCpu AveErr $(3, 10)$ $46.2$ $0.0406$ $8.1513\mathrm{e}-07$ $33.5$ $0.0500$ $6.4154\mathrm{e}-07$ $(3, 30)$ $70.6$ $0.3969$ $8.5449\mathrm{e}-07$ $60.3$ $0.4109$ $7.3853\mathrm{e}-07$ $(3, 40)$ $86.4$ $1.1688$ $8.0033\mathrm{e}-07$ $76.7$ $1.5922$ $7.4773\mathrm{e}-07$ $(3,100)$ $93.8$ $9.9734$ $8.6858\mathrm{e}-07$ $88.3$ $1.6283$ $8.7046\mathrm{e}-07$ $(3,200)$ $87.5$ $100.60$ $8.5287\mathrm{e}-07$ $84.3$ $105.96$ $7.9336\mathrm{e}-07$ $(3,300)$ $106.8$ $425.52$ $8.5950\mathrm{e}-07$ $103.6$ $426.80$ $8.4008\mathrm{e}-07$ $(4, 10)$ $35.2$ $0.1375$ $6.3347\mathrm{e}-07$ $29.8$ $0.1438$ $5.1179\mathrm{e}-07$ $(4, 20)$ $35.1$ $0.9688$ $7.0821\mathrm{e}-07$ $32.2$ $0.9234$ $5.8668\mathrm{e}-07$ $(4, 50)$ $44.4$ $47.389$ $5.6155\mathrm{e}-07$ $42.0$ $48.802$ $6.0793\mathrm{e}-07$ $(4,100)$ 40.9 $817.98$ $7.7532\mathrm{e}-07$ $38.8$ $823.74$ $7.4341\mathrm{e}-07$
 $(m, n)$ Algorithm 3.1 Linearized method AveIt AveCpu AveErr AveIt AveCpu AveErr $(3, 10)$ $46.2$ $0.0406$ $8.1513\mathrm{e}-07$ $33.5$ $0.0500$ $6.4154\mathrm{e}-07$ $(3, 30)$ $70.6$ $0.3969$ $8.5449\mathrm{e}-07$ $60.3$ $0.4109$ $7.3853\mathrm{e}-07$ $(3, 40)$ $86.4$ $1.1688$ $8.0033\mathrm{e}-07$ $76.7$ $1.5922$ $7.4773\mathrm{e}-07$ $(3,100)$ $93.8$ $9.9734$ $8.6858\mathrm{e}-07$ $88.3$ $1.6283$ $8.7046\mathrm{e}-07$ $(3,200)$ $87.5$ $100.60$ $8.5287\mathrm{e}-07$ $84.3$ $105.96$ $7.9336\mathrm{e}-07$ $(3,300)$ $106.8$ $425.52$ $8.5950\mathrm{e}-07$ $103.6$ $426.80$ $8.4008\mathrm{e}-07$ $(4, 10)$ $35.2$ $0.1375$ $6.3347\mathrm{e}-07$ $29.8$ $0.1438$ $5.1179\mathrm{e}-07$ $(4, 20)$ $35.1$ $0.9688$ $7.0821\mathrm{e}-07$ $32.2$ $0.9234$ $5.8668\mathrm{e}-07$ $(4, 50)$ $44.4$ $47.389$ $5.6155\mathrm{e}-07$ $42.0$ $48.802$ $6.0793\mathrm{e}-07$ $(4,100)$ 40.9 $817.98$ $7.7532\mathrm{e}-07$ $38.8$ $823.74$ $7.4341\mathrm{e}-07$
 [1] Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2553-2566. doi: 10.3934/jimo.2021080 [2] Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial and Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078 [3] Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049 [4] Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022073 [5] Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042 [6] ShiChun Lv, Shou-Qiang Du. A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021150 [7] Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022, 18 (1) : 157-172. doi: 10.3934/jimo.2020147 [8] Yan Li, Liping Zhang. A smoothing Newton method preserving nonnegativity for solving tensor complementarity problems with $P_0$ mappings. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022041 [9] Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052 [10] Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021146 [11] Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381 [12] Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79. [13] Yanfei Wang, Dmitry Lukyanenko, Anatoly Yagola. Magnetic parameters inversion method with full tensor gradient data. Inverse Problems and Imaging, 2019, 13 (4) : 745-754. doi: 10.3934/ipi.2019034 [14] H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549 [15] Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 [16] Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173 [17] Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4421-4460. doi: 10.3934/dcds.2021042 [18] Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034 [19] Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013 [20] Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

2021 Impact Factor: 1.411