-
Previous Article
The Hopf argument
- JMD Home
- This Issue
-
Next Article
A dichotomy between discrete and continuous spectrum for a class of special flows over rotations
Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori
1. | Department of Mathematics, University of South Alabama, Mobile, AL 36688, United States |
2. | Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States |
We also show that both ergodic and geometric properties of such a measure are very close to the corresponding properties of the Lebesgue measure with respect to the linear action $\a_0$.
[1] |
Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207 |
[2] |
Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79 |
[3] |
Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985 |
[4] |
Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287 |
[5] |
Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765 |
[6] |
Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509 |
[7] |
Anatole Katok, Federico Rodriguez Hertz. Rigidity of real-analytic actions of $SL(n,\Z)$ on $\T^n$: A case of realization of Zimmer program. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 609-615. doi: 10.3934/dcds.2010.27.609 |
[8] |
Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121 |
[9] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[10] |
Anatole Katok, Federico Rodriguez Hertz. Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups. Journal of Modern Dynamics, 2010, 4 (3) : 487-515. doi: 10.3934/jmd.2010.4.487 |
[11] |
Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $. Electronic Research Archive, 2020, 28 (1) : 103-125. doi: 10.3934/era.2020007 |
[12] |
Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130 |
[13] |
Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571 |
[14] |
Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55 |
[15] |
Changguang Dong. Separated nets arising from certain higher rank $\mathbb{R}^k$ actions on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4231-4238. doi: 10.3934/dcds.2017180 |
[16] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271 |
[17] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68 |
[18] |
Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355 |
[19] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[20] |
A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133. |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]