\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Unbounded orbits for outer billiards I

Abstract Related Papers Cited by
  • The question of B.H. Neumann, which dates back to the 1950s, asks if there exists an outer billiards system with an unbounded orbit. We prove that outer billiards for the Penrose kite, the convex quadrilateral from the Penrose tiling, has an unbounded orbit. We also analyze some finer properties of the orbit structure, and in particular produce an uncountable family of unbounded orbits. Our methods relate outer billiards on the Penrose kite to polygon exchange maps, arithmetic dynamics, and self-similar tilings.
    Mathematics Subject Classification: Primary: 37E99; Secondary: 52C23.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return