October  2007, 1(4): 649-663. doi: 10.3934/jmd.2007.1.649

Lower bounds on growth rates of periodic billiard trajectories in some irrational polygons

1. 

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL, 60208-2730, United States

Received  April 2007 Revised  July 2007 Published  July 2007

In this paper we show that there exist irrational polygons $P$ where the number of periodic billiard paths of length less than $n$, $f_P(n)$, grows superlinearly. In fact, if we fix the number of sides of our polygon, for any $k \in \N$ there is an open set of polygons where $f_P(n)$ grows faster than $n \log^k n$.
Citation: W. Patrick Hooper. Lower bounds on growth rates of periodic billiard trajectories in some irrational polygons. Journal of Modern Dynamics, 2007, 1 (4) : 649-663. doi: 10.3934/jmd.2007.1.649
[1]

Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055

[2]

Michel L. Lapidus, Robert G. Niemeyer. Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3719-3740. doi: 10.3934/dcds.2013.33.3719

[3]

Dmitri Scheglov. Growth of periodic orbits and generalized diagonals for typical triangular billiards. Journal of Modern Dynamics, 2013, 7 (1) : 31-44. doi: 10.3934/jmd.2013.7.31

[4]

Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162

[5]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[6]

Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics and Games, 2015, 2 (3&4) : 257-287. doi: 10.3934/jdg.2015004

[7]

Tony Lyons. Particle paths in equatorial flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2399-2414. doi: 10.3934/cpaa.2022041

[8]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[9]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[10]

Qinglan Xia. On landscape functions associated with transport paths. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1683-1700. doi: 10.3934/dcds.2014.34.1683

[11]

David Cowan. A billiard model for a gas of particles with rotation. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101

[12]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[13]

David Cowan. Rigid particle systems and their billiard models. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111

[14]

W. Patrick Hooper, Richard Evan Schwartz. Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2009, 3 (2) : 159-231. doi: 10.3934/jmd.2009.3.159

[15]

Serge Tabachnikov. Birkhoff billiards are insecure. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035

[16]

Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893

[17]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[18]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[19]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[20]

Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]