-
Previous Article
Algebraically periodic translation surfaces
- JMD Home
- This Issue
- Next Article
Partial hyperbolicity and ergodicity in dimension three
1. | IMERL-Facultad de Ingeniería, Universidad de la República, ulio Herrera y Reissig 565, CC 30, 11300 Montevideo, Uruguay |
2. | IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay, Uruguay |
[1] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[2] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[3] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[4] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[5] |
Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641 |
[6] |
Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006 |
[7] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[8] |
Jana Rodriguez Hertz, Carlos H. Vásquez. Structure of accessibility classes. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4653-4664. doi: 10.3934/dcds.2020196 |
[9] |
Alexander Blokh, Lex Oversteegen, Ross Ptacek, Vladlen Timorin. Laminations from the main cubioid. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4665-4702. doi: 10.3934/dcds.2016003 |
[10] |
Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029 |
[11] |
Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175 |
[12] |
Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819 |
[13] |
Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845 |
[14] |
Meiyu Su. True laminations for complex Hènon maps. Conference Publications, 2003, 2003 (Special) : 834-841. doi: 10.3934/proc.2003.2003.834 |
[15] |
Alexander Blokh, Clinton Curry, Lex Oversteegen. Density of orbits in laminations and the space of critical portraits. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2027-2039. doi: 10.3934/dcds.2012.32.2027 |
[16] |
Alexander Blokh. Necessary conditions for the existence of wandering triangles for cubic laminations. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 13-34. doi: 10.3934/dcds.2005.13.13 |
[17] |
Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022 |
[18] |
Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119 |
[19] |
Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control and Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002 |
[20] |
Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]