-
Previous Article
$C^1$-generic conservative diffeomorphisms have trivial centralizer
- JMD Home
- This Issue
-
Next Article
Growth and mixing
Ergodic properties of isoperimetric domains in spheres
1. | Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany |
2. | Department of Math. Sciences, Durham University, Durham DH1 3LE, United Kingdom |
[1] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4791-4804. doi: 10.3934/dcds.2021057 |
[2] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[3] |
Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841 |
[4] |
Daniel Visscher. A new proof of Franks' lemma for geodesic flows. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4875-4895. doi: 10.3934/dcds.2014.34.4875 |
[5] |
Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13 |
[6] |
Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2277-2287. doi: 10.3934/jimo.2021067 |
[7] |
Vladislav Kruglov, Dmitry Malyshev, Olga Pochinka. Topological classification of $Ω$-stable flows on surfaces by means of effectively distinguishable multigraphs. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4305-4327. doi: 10.3934/dcds.2018188 |
[8] |
Jeffrey Boland. On rigidity properties of contact time changes of locally symmetric geodesic flows. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 645-650. doi: 10.3934/dcds.2000.6.645 |
[9] |
David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477 |
[10] |
Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022 |
[11] |
Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403 |
[12] |
Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61 |
[13] |
Ítalo Melo, Sergio Romaña. Contributions to the study of Anosov geodesic flows in non-compact manifolds. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5149-5171. doi: 10.3934/dcds.2020223 |
[14] |
Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427 |
[15] |
Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35 |
[16] |
Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691 |
[17] |
Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230 |
[18] |
Krzysztof Frączek, Mariusz Lemańczyk. A class of mixing special flows over two--dimensional rotations. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4823-4829. doi: 10.3934/dcds.2015.35.4823 |
[19] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[20] |
François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]