-
Previous Article
Equilibrium measures for maps with inducing schemes
- JMD Home
- This Issue
-
Next Article
The 2008 Michael Brin Prize in Dynamical Systems
The Forni Cocycle (Brin Prize article)
1. | Mathematics Department, MS 136, Rice University, 6100 S. Main St., Houston, TX 77005-1892, United States |
For the full article, please click the "Full Text" link above.
[1] |
Rodolfo Gutiérrez-Romo. A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle. Journal of Modern Dynamics, 2019, 14: 227-242. doi: 10.3934/jmd.2019008 |
[2] |
Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355 |
[3] |
Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002 |
[4] |
Moulay-Tahar Benameur, Alan L. Carey. On the analyticity of the bivariant JLO cocycle. Electronic Research Announcements, 2009, 16: 37-43. doi: 10.3934/era.2009.16.37 |
[5] |
Jon Fickenscher. A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1983-2025. doi: 10.3934/dcds.2016.36.1983 |
[6] |
Alex Eskin, Gregory Margulis and Shahar Mozes. On a quantitative version of the Oppenheim conjecture. Electronic Research Announcements, 1995, 1: 124-130. |
[7] |
Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457 |
[8] |
Vitali Kapovitch, Anton Petrunin, Wilderich Tuschmann. On the torsion in the center conjecture. Electronic Research Announcements, 2018, 25: 27-35. doi: 10.3934/era.2018.25.004 |
[9] |
Michael Hutchings, Frank Morgan, Manuel Ritore and Antonio Ros. Proof of the double bubble conjecture. Electronic Research Announcements, 2000, 6: 45-49. |
[10] |
G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100. |
[11] |
Janos Kollar. The Nash conjecture for threefolds. Electronic Research Announcements, 1998, 4: 63-73. |
[12] |
Roman Shvydkoy. Lectures on the Onsager conjecture. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 473-496. doi: 10.3934/dcdss.2010.3.473 |
[13] |
Joel Hass, Michael Hutchings and Roger Schlafly. The double bubble conjecture. Electronic Research Announcements, 1995, 1: 98-102. |
[14] |
Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211 |
[15] |
James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160 |
[16] |
Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142 |
[17] |
Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79 |
[18] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[19] |
C.P. Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 935-946. doi: 10.3934/dcds.2000.6.935 |
[20] |
Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]