July  2009, 3(3): 335-357. doi: 10.3934/jmd.2009.3.335

Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups


Department of Mathematics, University of Michigan, Ann Arbor, MI 48104, United States

Received  October 2008 Revised  March 2009 Published  August 2009

We study actions by higher-rank abelian groups on quotients of semisimple Lie groups with finite center. First, we consider actions arising from the flows of two commuting elements of the Lie algebra - one nilpotent and the other semisimple. Second, we consider actions arising from two commuting unipotent flows that come from an embedded copy of $\overline{\SL(2,\RR)}^{k} \times \overline{\SL(2,\RR)}^{l}$. In both cases we show that any smooth $\RR$-valued cocycle over the action is cohomologous to a constant cocycle via a smooth transfer function. These results build on theorems of D. Mieczkowski, where the same is shown for actions on $(\SL(2,\RR) \times \SL(2,\RR))$/Γ.
Citation: Felipe A. Ramírez. Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups. Journal of Modern Dynamics, 2009, 3 (3) : 335-357. doi: 10.3934/jmd.2009.3.335

David Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. Journal of Modern Dynamics, 2007, 1 (1) : 61-92. doi: 10.3934/jmd.2007.1.61


Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34.


Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141


Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004


Maksim Maydanskiy, Benjamin P. Mirabelli. Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes. Electronic Research Announcements, 2011, 18: 131-143. doi: 10.3934/era.2011.18.131


William A. Veech. The Forni Cocycle. Journal of Modern Dynamics, 2008, 2 (3) : 375-395. doi: 10.3934/jmd.2008.2.375


Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187


Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133


Giulia Ajmone Marsan, Nicola Bellomo, Massimo Egidi. Towards a mathematical theory of complex socio-economical systems by functional subsystems representation. Kinetic and Related Models, 2008, 1 (2) : 249-278. doi: 10.3934/krm.2008.1.249


Moulay-Tahar Benameur, Alan L. Carey. On the analyticity of the bivariant JLO cocycle. Electronic Research Announcements, 2009, 16: 37-43. doi: 10.3934/era.2009.16.37


Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations and Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016


Alejandro Adem and Jeff H. Smith. On spaces with periodic cohomology. Electronic Research Announcements, 2000, 6: 1-6.


Daniel Guan. Modification and the cohomology groups of compact solvmanifolds. Electronic Research Announcements, 2007, 13: 74-81.


Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295


Jiangsheng Hu, Dongdong Zhang, Tiwei Zhao, Panyue Zhou. Balance of complete cohomology in extriangulated categories. Electronic Research Archive, 2021, 29 (5) : 3341-3359. doi: 10.3934/era.2021042


Augusto VisintiN. On the variational representation of monotone operators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046


Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211


James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160


Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142


Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79

2021 Impact Factor: 0.641


  • PDF downloads (96)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]